
 

NEUROMODULATION OF SPINAL AUTONOMIC REGULATION 

 

 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Amanda L. Zimmerman 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Biomedical Engineering 

 

 

 

 

 

 

 

Georgia Institute of Technology 

December 2011 

 

 

COPYRIGHT 2011 BY AMANDA ZIMMERMAN



 

NEUROMODULATION OF SPINAL AUTONOMIC REGULATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

   

Dr. Shawn Hochman, Advisor 

Department of Physiology 

Emory University School of Medicine 

 Dr. Lawrence Schramm 

Departments of Biomedical 

Engineering and Neuroscience 

John’s Hopkins University 

   

Dr. T. Richard Nichols 

School of Applied Physiology 

Georgia Institute of Technology 

 Dr. Minoru Shinohara 

School of Applied Physiology 

Georgia Institute of Technology  

   

Dr. Keith Tansey 

Departments of Physiology and Neurology 

Emory University School of Medicine 

  

   

  Date Approved:  August 9, 2011
 



 

iii 

 

ACKNOWLEDGEMENTS 

I would like to thank the many people that have encouraged me throughout this process 

and helped me reach this point.  While I walk away with a new title and diploma, this 

would not have been possible without the help and support of lab mates, family, and 

friends. 

First and foremost, to my advisor, Shawn Hochman, thank you for welcoming me into 

the lab despite the differences in our stated scientific goals and helping me develop as a 

scientist.  Thank you for encouraging me to pursue my scientific interests, for fostering 

my creativity and professional confidence, for encouraging me to keep going, and for all 

your patience troubleshooting when I was about to give up.  Thank you for your patience, 

your questions, and your motivation in pushing me to strive for the best. 

Thanks also to the rest of my lab (past and present) for your help and encouragement.  

Mike Sawchuk, thank you for your expertise in all things immuno and never-ending 

eagerness to help troubleshoot.  JoAnna, Heather, Jacob, Lisa, and Katie, thank you for 

brainstorming ideas, troubleshooting matlab and coreldraw, sharing electrode making and 

surgery techniques, and overall making the Hochman lab a great place to spend the last 6 

years.   

To my committee, Keith Tansey, Richard Nichols, Minoru Shinohara, and Larry 

Schramm, thank you for your guidance along the way, for your feedback during this 

process, and for encouraging me to think about the big picture.  Larry, thank you also for 

letting me pick your brain at countless conferences and your never-ending wealth of 

knowledge about the autonomic nervous system. 



iv 

 

To my family and Atlanta pseudo-family, thank you for your support and encouragement 

throughout this process. Mom and Dad, thank you for teaching me to question 

everything, to believe in myself, and for cheering me on every step of the way.  Michelle, 

thank you for teaching me how to explain myself without the scientific jargon, and for all 

your support.  To my Atlanta friends, thanks for putting life in perspective, encouraging 

me to finish, and overall being such a wonderful support network.  Jeff, thank you for 

your kind words of encouragement, your patience and caring in the past year of crazy 

traveling, and for not letting me run-away every time I got the urge.  I don’t know what I 

would’ve done without you all! 

 

 

 

 

 

 

 

 

 



v 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ............................................................................................... iii 

TABLE OF CONTENTS .....................................................................................................v 

LIST OF TABLES ............................................................................................................. xi 

LIST OF FIGURES .......................................................................................................... xii 

LIST OF ABBREVIATIONS .......................................................................................... xiv 

SUMMARY .................................................................................................................... xvii 

CHAPTER 1: Introduction ..................................................................................................1 

1.1 Organization of the Autonomic Nervous System ........................................2 

1.1.1 Efferent Pathways ............................................................................3 

1.1.1.1 Sympathetic Efferents ..........................................................5 

1.1.1.2 Parasympathetic Efferents ...................................................6 

1.1.2 Visceral Afferent Pathways .............................................................6 

1.2 Sympathetic Preganglionic Neurons ............................................................7 

1.2.1 Sympathetic Preganglionic Neuron Organization and Anatomy .....7 

1.2.2 Intrinsic Membrane Properties of SPNs. .........................................8 

1.3 Visceral Afferents ......................................................................................10 

1.3.1 Anatomy and Organization ............................................................10 

1.3.2 Presynaptic Inhibition ....................................................................12 

1.3.3 Visceral Reflexes ...........................................................................14 

1.3.3.1 Extraspinal Reflexes ..........................................................15 

1.3.3.2 Spinal Reflexes ..................................................................15 

1.4 Descending Monoamines ...........................................................................15 



vi 

 

1.4.1 Descending Monoaminergic Projections to the Spinal Cord .........16 

1.4.1.1 Serotonin. ...........................................................................16 

1.4.1.2 Norepinephrine and Epinephrine. ......................................17 

1.4.1.3 Dopamine. ..........................................................................17 

1.4.2 Effects of Monoamines on Sympathetic Preganglionic Neurons ..18 

1.4.2.1 Serotonin. ...........................................................................20 

1.4.2.2 Norepinephrine ..................................................................20 

1.4.2.3 Dopamine. ..........................................................................21 

1.4.3 Monoaminergic Modulation of Visceral Afferents........................22 

1.4.3.1 Monoaminergic Modulation of Visceral Afferent 

Presynaptic Inhibition ....................................................................23 

1.5 Use of Transgenic Mouse Models in Studies on CNS Function and 

Dysfunction ............................................................................................................24 

1.6 Summary and Goals ...................................................................................25 

CHAPTER 2: Sympathetic Preganglionic Neuron Intrinsic Properties ............................27 

2.1 Abstract ......................................................................................................27 

2.2 Introduction ................................................................................................28 

2.3 Materials and Methods ...............................................................................30 

2.3.1 Electrophysiology and Slice Preparation .......................................31 

2.3.2 Quantification of Membrane Properties .........................................32 

2.3.3 Statistical Analysis .........................................................................34 

2.4 Results ........................................................................................................35 

2.4.1 General Membrane Properties .......................................................35 

2.4.2 Anomalous Inward Rectification ...................................................37 

2.4.3 Transient Outward Rectification ....................................................37 

2.4.4 Repetitive Firing ............................................................................38 



vii 

 

2.4.5 Persistent Inward Current ..............................................................42 

2.4.6 Cluster Analysis .............................................................................42 

2.4.7 Properties in Juvenile Mice ............................................................43 

2.5 Discussion ..................................................................................................47 

2.5.1 Comparison to Membrane Properties Reported in Other Species .48 

2.5.2 Active Conductances .....................................................................50 

2.5.3 Repetitive Firing and Spike Frequency Adaptation .......................51 

CHAPTER 3: Monoaminergic Modulation of SPN Properties .........................................54 

3.1 Abstract ......................................................................................................54 

3.2 Introduction ................................................................................................56 

3.3 Experimental Design ..................................................................................58 

3.3.1 Slice Electrophysiology .................................................................58 

3.3.1.1 Dissection ...........................................................................58 

3.3.1.2 Application of Agonists .....................................................59 

3.3.1.3 Quantifying Changes in Cellular Excitability ....................59 

3.3.2 Ventral Root Potentials ..................................................................60 

3.3.2.1 Dissection ...........................................................................60 

3.3.2.2 Recording Configuration ...................................................61 

3.3.2.3 Drug Application and Quantification of Drug Effects .......64 

3.3.3 Immunohistochemistry ..................................................................64 

3.4 Results ........................................................................................................66 

3.4.1 Effects of the Monoamines on SPN Membrane Properties ...........66 

3.4.1.1 Serotonin ............................................................................66 

3.4.1.2 Norepinephrine ..................................................................67 

3.4.1.3 Dopamine ...........................................................................69 



viii 

 

3.4.2 Monoamine-induced Net Changes in Excitability of Population 

Spinal Efferents ..........................................................................................69 

3.4.2.1 Serotonin ............................................................................69 

3.4.2.2 Norepinephrine ..................................................................70 

3.4.2.3 Dopamine ...........................................................................74 

3.4.3 Distribution of Monoamine Receptors...........................................77 

3.4.3.1 Serotonin Receptors ...........................................................77 

3.4.3.2 Adrenergic Receptors.........................................................80 

3.4.3.3 Dopaminergic Receptors ....................................................80 

3.5 Discussion ..................................................................................................86 

3.5.1 Serotonin ........................................................................................86 

3.5.2 Norepinephrine ..............................................................................87 

3.5.3 Dopamine .......................................................................................88 

3.5.4 Ventral Root Recordings and Visceral Afferent Mediated Reflexes89 

CHAPTER 4: Modulation of Visceral Afferent Mediated Reflexes and Presynaptic 

Inhibition ............................................................................................................................92 

4.1 Abstract ......................................................................................................92 

4.2 Introduction ................................................................................................93 

4.3 Materials and Methods ...............................................................................95 

4.3.1 Dissection .......................................................................................96 

4.3.2 Recording Configuration ...............................................................96 

4.3.3 Extracellular Field Potentials .........................................................98 

4.3.4 Drug Solutions and Applications ...................................................98 

4.3.5 Data Analysis .................................................................................99 

4.3.6 Immunohistochemistry ..................................................................99 

4.4 Results ......................................................................................................101 



ix 

 

4.4.1 Composition of the Major Splanchnic Nerve and Sympathetic 

Chain 101 

4.4.2 Splanchnic Nerve Stimulation Activates Spinal Reflexes and 

Primary Afferent Depolarization .............................................................103 

4.4.3 Extracellular Field Potentials .......................................................108 

4.4.4 Monoaminergic Depression of Evoked Dorsal Root Potentials and 

Field Potentials.........................................................................................109 

4.4.5 Dose Response .............................................................................111 

4.4.5.1 Serotonin ..........................................................................115 

4.4.5.2 Norepinephrine ................................................................115 

4.4.5.3 Dopamine .........................................................................115 

4.4.5.4 Comparison of 5HT, NE, and DA Effects .......................116 

4.4.6 Comparison of Monoaminergic Depression on Visceral Afferent- 

evoked Responses in the Dorsal Root and Ventral Root .........................117 

4.4.6.1 Serotonin ..........................................................................117 

4.4.6.2 Norepinephrine ................................................................117 

4.4.6.3 Dopamine .........................................................................120 

4.5 Discussion ................................................................................................123 

4.5.1 Composition of the Sympathetic Chain and Greater Splanchnic 

Nerve 124 

4.5.2 Visceral-afferent Evoked Dorsal Root Potentials ........................124 

4.5.3 Visceral Afferent-evoked Field Potentials ...................................127 

4.5.4 Monoaminergic Modulation of Dorsal Root Potentials and Field 

Potentials ..................................................................................................128 

4.5.5 Dopamine’s Dose-dependent Actions ..........................................131 

4.5.6 Putative Mechanisms ...................................................................132 

4.5.6.1 Direct Actions on Primary Afferents ...............................132 



x 

 

4.5.6.2 Postsynaptic Actions on the First Synapse or Interneurons 

Involved in PAD Generation .......................................................132 

4.5.6.3 Actions on Synaptic Relay to Primary Afferents Producing 

PAD 133 

4.6 Conclusions ..............................................................................................135 

CHAPTER 5: Conclusions ..............................................................................................136 

5.1 Summary and Discussion of Key Findings ..............................................136 

5.2 Function of Visceral Afferent-evoked Presynaptic Inhibition .................140 

5.3 Monoaminergic Modulation of Spinal Autonomic Circuits ....................142 

5.4 Future Studies ..........................................................................................146 

REFERENCES ................................................................................................................149 

 



xi 

 

LIST OF TABLES 

Page 

Table 2.1: Summary of membrane properties....................................................................36 

Table 2.2 Comparison of statistically significant parameter differences between clusters43 

Table 3.1. Immunohistochemistry receptors and concentrations. ......................................66 

Table 4.1: Dorsal root potential changes by drug. ...........................................................116 

Table 4.2: Ventral root potential changes by drug ...........................................................116 

 



xii 

 

LIST OF FIGURES 

Page 

Figure 1.1 General organization of the efferent projections of the autonomic nervous 

system. .................................................................................................................................4 

Figure 1.2.  Schematic of spinal segmental organization associated with the sympathetic 

nervous system. ....................................................................................................................5 

Figure 1.3. Sympathetic preganglionic neuron organization ...............................................9 

Figure 1.4.  Circuitry and proposed mechanisms producing primary afferent presynaptic 

inhibition via depolarization of their afferent terminals. ...................................................14 

Figure 1.5 Mechanisms of neuromodulation. ....................................................................19 

Figure 2.1 HB9-GFP fluorescence in transverse slice permits selective targeting of SPNs 

in the IML. .........................................................................................................................30 

Figure 2.2 Membrane property correlations. .....................................................................39 

Figure 2.3 Transient outward and anomalous rectification. ..............................................40 

Figure 2.4. Repetitive firing properties. .............................................................................41 

Figure 2.5 Persistent inward currents (PICs). ....................................................................44 

Figure 2.6 Cluster analysis. ................................................................................................45 

Figure 2.7 Neonatal and juvenile mice comparison. ..........................................................46 

Figure 3.1 Quantifying changes in SPN excitability. ........................................................60 

Figure 3.2. Ventral Root Potential Recording Configuration. ...........................................63 

Figure 3.3. Serotonin (5HT) increases cellular excitability. ..............................................67 

Figure 3.4 NE increases cellular excitability in a complex manner. .................................68 

Figure 3.5 DA had mixed actions on SPN membrane properties. .....................................71 

Figure 3.6. 5HT actions on evoked and resting ventral root properties. ............................72 

Figure 3.7  NE actions on evoked and resting ventral root properties. ..............................73 

Figure 3.8 Changes in ongoing ventral root activity. .........................................................75 



xiii 

 

Figure 3.9 DA actions on evoked and resting ventral root properties. ..............................76 

Figure 3.10 5HT2A receptors. .............................................................................................78 

Figure 3.11 5HT7 receptors. ...............................................................................................79 

Figure 3.12 Adrenergic receptor 1D. ................................................................................81 

Figure 3.13 Adrenergic receptor 2A. ................................................................................82 

Figure 3.14 D2 dopaminergic receptors. ............................................................................83 

Figure 3.15 D3 dopaminergic receptors. ............................................................................84 

Figure 3.16 D5 dopaminergic receptors. ............................................................................85 

Figure 4.1 Sympathetic chain anatomy. .............................................................................97 

Figure 4.2 Example of events observed following splanchnic nerve stimulation. ..........100 

Figure 4.3 Axon fiber composition in paravertebral ganglia. ..........................................102 

Figure 4.4 Differences in properties of DRPs and VRPs. ................................................105 

Figure 4.5 Relation between DRP, afferent fiber volley, and spinal segmental 

distribution. ......................................................................................................................107 

Figure 4.6 EFP recording locations. ................................................................................110 

Figure 4.7 . Monoamine effects on splanchnic evoked responses. ..................................112 

Figure 4.8 DRP, VRP, and EFP time-dependent comparison. ........................................114 

Figure 4.9. 5HT actions on evoked and resting dorsal root properties. ...........................118 

Figure 4.10 NE actions on evoked and resting dorsal root properties. ............................119 

Figure 4.11. DA actions on evoked and resting dorsal root properties. ...........................121 

Figure 4.12 Comparison of dorsal and ventral root effects. ............................................122 

Figure 4.13  PAD-mediated presynaptic inhibition circuitry...........................................134 

 

 

 



xiv 

 

 

LIST OF ABBREVIATIONS 

ANS 

SNS 

PNS 

T, L, S 

SPNs 

ILf 

ILp 

IC 

ICpe 

IML 

TTX 

AHP 

4-AP 

TEA 

DRG 

PSI 

GABA 

PAD 

DRP 

NE 

5HT 

autonomic nervous system 

sympathetic nervous system 

parasympathetic nervous system 

thoracic (T), lumbar (L), and sacral (S) spinal segments 

sympathetic preganglionic neurons 

pars funicularis 

pars principalis  

intercalatus spinalis 

intercalatus spinalis pars paraependymalis 

intermediolateral column  

tetrodotoxin 

afterhyperpolarization  

4-aminopyridine 

tetraethylammonium   

dorsal root ganglia 

Presynaptic inhibition  

γ-amino-butyric acid 

primary afferent depolarization 

dorsal root potential 

norepinephrine, noradrenaline 

Serotonin, 5-hydroxytryptamine 



xv 

 

DA 

MAs 

LC 

NMDA 

EPSPs 

IPSPs 

eGFP 

DIC 

Vm 

m 

L 

I-V 

Rin 

Cm 

Vth 

f-I 

PAM 

Vrest 

Ipeak 

AP 

Vm 

PIC 

SFA 

dopamine 

Monoamines 

locus coeruleus 

N-methyl-D-aspartate  

excitatory postsynaptic potentials 

inhibitory postsynaptic potentials 

enhanced green fluorescent protein 

differential-interference contrast optics 

membrane potential  

membrane time constant  

equivalent cylinder electrotonic length 

Current-voltage 

input resistance 

Membrane capacitance 

threshold voltage 

frequency-current 

Partition Around Medoids method 

resting potential  

peak inward current 

action potential 

membrane potential 

persistent inward current 

spike frequency adaptation 



xvi 

 

(s)ACSF 

mM 

VRP 

EFP 

(sucrose) artificial cerebrospinal fluid 

millimolar 

ventral root potential 

extracellular field potential 

 

  

 



xvii 

 

SUMMARY 

The central nervous system is largely responsible for receiving sensory information from 

the environment and determining motor output.  Yet, centrally-derived behavior and 

sensation depends on the optimal maintenance of the cells, tissues, and organs that feed 

and support these functions.  Homeostasis, or maintaining a stable internal environment 

in the face of changing external conditions, is largely obtained through the function of 

our visceral organs and blood vessels. Most of visceral regulation occurs without 

conscious oversight, making the spinal cord a key site for integration and control.  How 

the spinal cord modulates output to our organs, or sensory information from them, is 

poorly understood. 

The overall aim of this dissertation was to better understand spinal processing of both 

visceral sensory information to and sympathetic output from the spinal cord.  To do this, I 

first established and validated a HB9-GFP transgenic mouse model that unambiguously 

identified sympathetic preganglionic neurons (SPNs), the spinal output neurons for the 

sympathetic nervous system.  Transitioning to the mouse model opens the study of the 

autonomic nervous system to powerful transgenic technologies currently being 

developed, allowing characterization of circuit operation in ways that would otherwise be 

impossible.  Using this model, I investigated the electrophysiological similarities and 

diversity of SPNs, and compared their active and passive membrane properties to those 

described in other animal models.  I hypothesized that SPNs would exhibit similar 

properties as seen in other species, yet would not be homogeneous in function.  My 

results indicate that while many of the same characteristics are shared, SPNs are a 
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heterogeneous group that can be differentiated based on their electrophysiological 

properties.   

Since descending monoaminergic pathways have particularly dense projections to areas 

in the spinal cord that SPNs are found, I next examined the modulatory role that the 

monoamines have on spinal sympathetic output.  While each neuromodulator tested had a 

unique signature of action, serotonin and norepinephrine appeared to increase the 

excitability of individual SPNs, while dopamine had more mixed actions.  Given the 

electrophysiological diversity of SPNs determined in aim 1, I sought to characterize the 

actions of the monoamines on the population of SPNs.  Additionally, since many 

autonomic reflexes are integrated by the spinal cord, I questioned whether these reflexes 

would be similarly modulated.  I therefore developed a novel in vitro spinal cord and 

sympathetic chain preparation, which allowed me to investigate visceral afferent 

mediated reflexes and their neuromodulation by monoamines, by recording population 

responses of SPNs and motor neurons in the ventral roots.  This preparation exposed a 

dichotomy of action, where sympathetic and somatic motor output is generally enhanced 

by the monoamines, but reflexes mediated by visceral input are depressed. 

Utilizing the spinal cord and sympathetic chain preparation, I also investigated how the 

spinal cord modulates visceral sensory information.  One of the most powerful means of 

selectively inhibiting afferent information from reaching the spinal cord is presynaptic 

inhibition.  My results demonstrated that activity in multiple visceral afferents in the 

splanchnic nerve and sympathetic chain can lead to presynaptic inhibition of afferents.  

Additionally, I hypothesized that descending monoamine systems would depress synaptic 

transmission of visceral afferents to the spinal cord, resulting in decreased visceral 
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reflexes.  My results showed that in addition to depressing synaptic transmission to the 

spinal cord, the monoamines also depress the intrinsic circuitry that generates presynaptic 

inhibition of related afferents.   

Taken together, my results indicate that descending monoaminergic pathways shift the 

state of the autonomic nervous system.  When strongly active, the monoamines act to 

limit the amount of visceral sensory information reaching the central nervous system and 

increase sympathetic output, resulting in an uncoupling of output from visceral sensory 

input and transitioning to a feed-forward, sympathetically dominant control strategy.  On 

the other hand, when descending monoaminergic release is low, the central nervous 

system becomes more receptive to visceral sensory information and sympathetic tone is 

decreased, likely resulting in a parasympathetic dominant output state. This combination 

offers complex modulatory strategies for descending systems. 
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  CHAPTER 1

INTRODUCTION 

The central nervous system is largely responsible for receiving sensory information from 

the environment and determining motor output.  Yet, centrally-derived behavior and 

sensation depends on the optimal maintenance of the cells, tissues, and organs that feed 

and support these functions.  Homeostasis, or maintaining a stable internal environment 

in the face of changing external conditions, is largely obtained through the function of 

our visceral organs and blood vessels.  This includes digesting and absorbing nutrients 

(gastrointestinal), exchanging O2 and CO2 with the environment (respiratory), waste 

excretion (kidney, urinary tract), and transporting blood and nutrients throughout the 

body (cardiovascular) 
[114]

.  The spinal cord is a major integration and control center for 

both output from the central nervous system to the various organs and sensory 

information from them. Yet, exactly how the spinal cord regulates this bidirectional flow 

of information is not well understood.   

The focus of this dissertation, therefore, is how the spinal cord generates motor output to 

the viscera and regulates sensory information from them.  Below, I begin with an 

overview of the body’s “involuntary” nervous system, the autonomic nervous system.  I 

then present more detailed background on the spinal control of this system, focusing 

separately on the spinal output to the viscera, input from the viscera to the spinal cord, 

and their modulation by known descending monoamine systems from the brain.  Lastly, I 

discuss the benefits of shifting to a transgenic mouse model, before concluding with the 

objective and aims of this thesis.  



2 

 

1.1 ORGANIZATION OF THE AUTONOMIC NERVOUS SYSTEM 

The visceral motor system is known as the autonomic nervous system (ANS), and is 

called so because its regulation is largely independent of voluntary control and conscious 

sensation.  There are three major divisions of the ANS: sympathetic, parasympathetic, 

and the enteric nervous system.  The enteric nervous system regulates gastrointestinal 

function through local motor neurons, sensory neurons, and interneurons with relatively 

little oversight from the central nervous system.  The sympathetic and parasympathetic 

branches are dependent on activation from the central nervous system, with largely 

antagonistic actions.  The sympathetic nervous system (SNS) is most commonly 

associated with the fight-or-flight reaction to stress, where the body shunts blood to 

skeletal muscles, increases heart rate, increases sweating, dilates pupils, and shuts down 

digestion.  On the other hand, the parasympathetic nervous system (PNS) is better known 

for enabling the “rest-and-digest” functions under non-stressful conditions, such as 

maintaining resting heart-rate and metabolism 
[125]

.   

 While the SNS and PNS are not as simply differentiated as described above, both 

systems work to maintain ongoing homeostatic activity (e.g. heart rate, respiration, and 

metabolism) and respond to an emergency (e.g. extreme, heat cold, or danger).  Each 

branch exerts opposing actions on multiple target tissues (Figure 1.1).  The balance of 

these two systems shifts depending on circumstances: exercise and stress causes the SNS 

to dominate, while PNS is predominant during relaxing conditions, allowing the body to 

focus on food breakdown and storage 
[169]

.  Yet, some body functions require the 

cooperation of both branches.  Such is the case with micturition, which requires 

sympathetic activation and parasympathetic inhibition for bladder filling, and 
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parasympathetic activation and somatic motor neuron inhibition for bladder emptying 

[125]
.   Importantly, autonomic circuits have the ability to evoke both target-specific 

responses (e.g. bladder contraction) well as system-wide activation (e.g. fight-or-flight 

response). 

1.1.1 Efferent Pathways 

As opposed to the somatic nervous system, where motor neurons project directly from the 

spinal cord to skeletal muscles, autonomic efferent pathways are disynaptic.  

Preganglionic neurons, whose cell bodies lie within the spinal cord or brainstem, synapse 

onto postganglionic neurons within autonomic ganglia in the periphery.  Unlike the 

innervation of skeletal muscle by somatic nerve fibers, autonomic postganglionic fibers 

lack both presynaptic specializations and specialized postsynaptic regions; rather, they 

have highly branched axon terminals with several nerve endings, allowing for diffuse 

activation.  Efferent pathways for both the SNS and PNS are anatomically distinct, with 

preganglionic neurons exiting different locations of the central nervous system and 

travelling different distances to their postganglionic targets ( 
[125]

; see also Figure 1.1).  

Some end targets, such as vascular smooth muscle and sweat glands, receive only 

sympathetic innervation. 
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Figure 1.1 General organization of the efferent projections of the autonomic nervous system. 

Autonomic efferent pathways synapse in autonomic ganglia before reaching their end targets.  Sympathetic 

preganglionic neurons have cell bodies in the thoracolumbar spinal cord, while parasympathetic 

preganglionic neurons have cell bodies in the brainstem and sacral spinal cord.  Sympathetic ganglia lie 

close to the spinal cord while parasympathetic ganglia are adjacent to their end targets.  Most target organs 

receive dual sympathetic and parasympathetic innervation. Figure and information based on text and 

figures in 
[113, 125, 169]
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1.1.1.1 Sympathetic Efferents 

Preganglionic neurons of the sympathetic division have cell bodies in the thoracic (T) 

and upper lumbar (L) regions of the spinal cord (T1-L2).  Most sympathetic 

preganglionic axons are short, synapsing in autonomic ganglia adjacent to the spinal cord, 

the paravertebral ganglia.  The paravertebral ganglia form a chain, with preganglionic 

axons often travelling multiple segments rostrally and/or caudally (see Figure 1.2).  

Other preganglionic neurons pass through the sympathetic chain and synapse on 

postganglionic neurons in more distal, pre-vertebral ganglia (e.g. celiac ganglion and the 

Figure 1.2.  Schematic of spinal segmental organization associated with the 

sympathetic nervous system. 

Shown are two segmental ganglia as part of the paravertebral sympathetic chain and their 

relation to afferent input and efferent output from the spinal cord. 
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inferior and superior mesenteric ganglia) or on cells in the adrenal medulla.   

1.1.1.2 Parasympathetic Efferents 

Preganglionic neurons of the PNS have cell bodies in the brainstem (nuclei associated 

with cranial nerves III, VII, IX, and X) and in the sacral spinal cord (S2-S4).  In contrast 

to the SNS, PNS ganglia are much closer (and sometimes in) the target tissue, resulting in 

longer preganglionic and shorter postganglionic axons.  75% of all parasympathetic fibers 

lie in the vagus nerve (X), which innervates the thoracic and abdominal viscera (e.g. 

heart, lungs, stomach, and pancreas).  The PNS also has much less divergence than the 

SNS, with the average preganglionic to postganglionic ratio 1:3 (compared to the average 

SNS ratio of 1:10), allowing for more targeted tissue stimulation 
[169]

.  

1.1.2 Visceral Afferent Pathways 

Neurons that send sensory information from the visceral organs (e.g. stomach, bladder, 

colon, and blood vessels) to the central nervous system are called visceral afferent 

neurons.  These afferents are involved in regulation of specific organs, multi-organ 

reflexes, general neuroendocrine regulation, visceral sensation (including pain), and 

likely influence emotional feeling 
[112]

.  Except in cases of potential organ danger and 

bladder control, visceral afferent-mediated reflexes are generally not under voluntary 

control, and are regulated by circuits in the brainstem, hypothalamus, and spinal cord 

[125]
.  While an integral part of determining output from the ANS, visceral afferents are 

not classified as sympathetic or parasympathetic since they are functionally associated 

with both branches. 
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 Of great clinical concern is the generation of visceral pain. In contrast to somatic pain, 

which is caused by insult to the tissue and is relatively well localized,  visceral pain is not 

necessarily linked to visceral injury, is difficult to localize, and is often referred to nearby 

somatic regions 
[39]

.   These substantial differences in processing visceral sensory 

information make it imperative to study visceral pain and afferent modulation 

specifically, and not make assumptions based on somatic afferent processing. 

This dissertation will focus on spinal regulation of the autonomic nervous system.  Below 

I will outline in greater detailed the research completed to date on the following:  (1) the 

sympathetic output neurons from the spinal cord, (2) visceral afferent processing in the 

spinal cord, and (3) modulation of these by descending monoamine systems. 

1.2 SYMPATHETIC PREGANGLIONIC NEURONS 

Within the sympathetic division, the cells responsible for integrating the descending 

control and sensory input and determining the final central output from the spinal cord 

are the sympathetic preganglionic neurons (SPNs).  

1.2.1 Sympathetic Preganglionic Neuron Organization and Anatomy 

There are at least 4 populations of SPNs;  pars funicularis (ILf), pars principalis (ILp), 

intercalatus spinalis (IC) and, intercalatus spinalis pars paraependymalis (ICpe). The ILp 

(also known as the intermediolateral column, or IML) has the largest number and density 

of SPNs 
[194]

, and within this region SPN somas are found in distinct clusters in each 

spinal segment, forming a ladder-like distribution symmetric around the central canal 
[6]

 

(see also Figure 1.3). Their dendrites are mainly oriented rostrocaudally within the lateral 

funiculus and to a lesser extent medially within the grey matter toward the central 
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autonomic area 
[220]

. While location does not predict their end targets, SPNs are 

segmentally organized and exhibit a rostrocaudal and mediolateral gradient of projections 

[77]
.    

1.2.2 Intrinsic Membrane Properties of SPNs. 

There are comparatively few studies on SPN intrinsic properties, and all in rat and cat 

models.  Earlier reports suggest SPNs are not intrinsically active, but rather driven by 

synaptic inputs 
[197]

.  However, intrinsic firing and strong electrical interactions have been 

observed in neonatal rat spinal slices 
[151]

 and isolated spinal cord preparations 
[170]

.  

Spontaneous activity in a subpopulation of SPNs is often rhythmic, and can be induced 

by monoaminergic application in otherwise quiescent neurons 
[231, 276]

.  

While there are at least 4 subpopulations of neurons along the mediolateral axis, only 

those located in the IML have been targeted electrophysiologically 
[108, 197, 220, 236]

.   

Resting membrane potentials range between -40 and -80 mV and linear current-voltage 

relations have been reported.  Action potentials comprise tetrodotoxin (TTX)–sensitive 

and kinetically-slower Ca
2+

-sensitive/TTX-insensitive components resulting in a 

strikingly long spike duration and long afterhyperpolarization (AHP).  Other in vitro 

conductances observed include: a fast 4-aminopyridine (4-AP)-sensitive and slower Ba
2+

-

sensitive outward rectifier (A and D type respectively), and an atypical K
+
- mediated 

sustained outward rectifier with insensitivity to Cs
+
 and tetraethylammonium (TEA) 

[180, 

270]
. 
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Figure 1.3. Sympathetic preganglionic neuron organization  

A.  Confocal stacks of HB9-GFP labeling in a thoracic cord transverse section of a p3 mouse, shown as an 

overlay of spinal cord darkfield images  (stack of 70; each slice is 1.3 m thick, for a total depth of 91 m 

shown). Note complete absence of label in dorsal horn.  B. Same HB9-GFP image as in A in grayscale with 

dorsal horn omitted.  C.  Horizontal section at central canal level shows SPNs in the IML and additional 

SPNs and their projection in the mediolateral plane (confocal stack z-stack of 25 sections, each 1.0 m 

optical thickness, for a total depth of 25 m). Dotted line identifies midline region just dorsal to the central 

canal. Abbreviations are: IML, intermediolateral nucleus; Mns, motor neurons. 
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Currently, aside from our work, there have been no studies on the functional properties of 

SPNs in mouse, yet many properties have been conserved across species (including cat, 

rat, and guinea pig).  Due to the versatility of transgenics (see section 1.5), I believe the 

mouse will quickly become the species of choice to detail membrane properties of SPNs. 

1.3 VISCERAL AFFERENTS  

The central nervous systems receives sensory information from the internal organs 

through two paths: the vagus nerve, which projects to the nucleus of the solitary tract and 

then on to 2
nd

 order neurons in the brainstem and other subcortical regions 
[112]

; and 

through sympathetic and pelvic parasympathetic nerves, which pass through prevertebral 

and/or paravertebral ganglia to the thoracolumbar and sacral spinal cord 
[13, 17, 229]

.  It is 

commonly thought that nociceptive signals travel predominantly through the latter path 

[36]
, yet little is understood of the spinal processing of visceral afferent signals. 

1.3.1 Anatomy and Organization 

Apart from afferents of the enteric nervous system (which have their cell bodies in the 

walls of the gastrointestinal tract and function largely outside the regulation of the CNS), 

visceral afferents that project to the spinal cord have cells bodies that lie in the dorsal root 

ganglia (DRG), with distal processes that often travel with the sympathetic nerves 

(Figure 1.1, see also 
[36, 187]

 ).  Spinal projections of visceral afferents are segmentally 

organized in ‘viscerotomes’ 
[112, 187]

, with the greater splanchnic nerve carrying most of 

the sensory information from abdominal viscera 
[134, 188]

.  Horseradish peroxidase studies 

of the projections of neurons within this nerve have been investigated in the rat, cat, and 

guinea pig 
[37, 38, 188, 247]

, with consistent results of projections in the spinal cord and the 
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location of cell bodies in the DRG.  Ipsilateral DRG neurons were labeled in many 

thoracic segments, with the greatest density in the T8-T12 range in the rat 
[188]

.  Even 

with this large rostral-caudal distribution, only about 5-6% of afferents in the cat and 

about 10% in the rat at those DRG levels are visceral in origin. In contrast, about 80% of 

the fibers in the cervical vagus nerve are afferent 
[112]

.  

Visceral afferents also differ from somatic afferents in their spinal projections.  Visceral 

afferents project predominantly to lamina I and V of the dorsal horn, with sparse labeling 

in the intermediate laminae (III- IV) 
[37, 188, 247]

.   A few contralateral branches also  follow 

the border between the dorsal funiculus and grey matter, to reach final destinations in 

lamina X or the contralateral side 
[188]

.  Terminations largely appear to skip lamina II, 

where most somatic C fibers terminate 
[246]

.  Thinly myelinated and unmyelinated A and 

C-fibers make up the vast majority of visceral afferent fibers 
[2, 3, 78, 134, 188]

.  While most 

somatic C fibers terminate almost exclusively in the superficial dorsal horn in dense 

terminal plexuses, visceral C fibers have more diffuse projections, with processes 

extending 2-3 segments in both the rostral and caudal directions in the dorsal funiculus or 

Lissauer’s tract 
[246-248]

.  Collateral branches from visceral afferents also transverse lamina 

II-IV to reach terminal destinations near laminae V and X, sometimes even on the 

contralateral side.   

In summary, while innervation of viscera is much less dense than innervation of skeletal 

muscle and skin, projections to the spinal cord are much more diffuse in terms of laminar 

and rostrocaudal termination.  This is often hypothesized to be one of the reasons visceral 

sensations are difficult to localize yet have widespread action 
[112, 187]

.   
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1.3.2 Presynaptic Inhibition  

At any time, the spinal cord receives an overabundance of input from afferent and 

supraspinal sources.  One can imagine the need to suppress some of this information to 

maximize intrinsic processing capabilities.  Since the time of Sir John Eccles, it has been 

noted that presynaptically inhibiting afferent inflow is one of the most powerful forms of 

inhibition, more powerful than postsynaptic inhibition at blocking information from a 

variety of afferents, and that this mechanism is widespread throughout the spinal cord 
[67]

.  

Presynaptic inhibition (PSI) is longer lasting than postsynaptic inhibition, lasting for 

hundreds of milliseconds compared to tens of milliseconds 
[68]

.  Additionally, by blocking 

sensory inflow without influencing the cellular properties of the postsynaptic cell and 

acting directly on primary afferents, it allows for selective inhibition of particular afferent 

subclasses or even specific collaterals from the same afferents 
[69]

. 

PSI of primary afferents is traditionally thought to be mediated by trisynaptic circuitry 

with last order γ-amino-butyric acid (GABA)ergic interneurons 
[102, 219]

.  Activation of 

GABAA receptors on primary afferent terminals causes an efflux of Cl
-
 ions, since the 

chloride gradient in primary afferents is higher inside the neuron than in the extracellular 

space.  This leads to a depolarization of primary afferents (primary afferent 

depolarization, or PAD). A summation of PAD in multiple afferents can be measured by 

electrodes on the dorsal roots of the spinal cord, as a slow dorsal root potential (DRP).  

This depolarization is thought to prevent action potentials from reaching the afferent 

terminals or reducing their amplitude (e.g. 
[67, 68, 263]

, for review see 
[219]

).  A schematic 

summarizing the mechanisms producing PAD and the resulting DRP is shown in Figure 

1.4. 
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PSI can be elicited by afferents of the same origin as well as by functionally distinct 

afferents.   While PAD was elicited in and across subsets of group I and II muscle and 

cutaneous afferents and has been relatively well characterized (e.g. 
[27, 28, 121, 213]

), PSI in 

visceral afferents has been explored in much less detail.  PSI has been shown in vagal 

afferents mediating lung stretch, but not vagal afferents involved in blood pressure 

regulation 
[212, 217]

.  More targeted PSI appears to be present on autonomic circuits 

involved in  micturition 
[9]

.  Only one group has looked at the occurrence of PAD in non-

vagal visceral afferents.  Early work by Selzer and Spencer in the anesthetized and acute 

spinalized cat has demonstrated that PAD can be evoked in response to splanchnic nerve 

and sympathetic chain stimulation 
[228]

.  Unfortunately, no subsequent research has 

sought to investigate the conditions and extent of PSI, or how descending systems may 

modulate it.  To investigate this, I developed an in vitro model for assessing spinal 

visceral afferent evoked PAD (see Chapter 4 for more detail). 
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1.3.3  Visceral Reflexes  

As described above, autonomic preganglionic neurons synapse in para- and pre-vertebral 

ganglia on postganglionic neurons, which then innervate the viscera.  Individual 

preganglionic neurons project to many postganglionic neurons (approximately 1:15 ratio 

in rodents
[203]

  and 1:100 ratio in human 
[66]

), which tend to receive only one or two 

Figure 1.4.  Circuitry and proposed mechanisms producing primary afferent presynaptic inhibition 

via depolarization of their afferent terminals. 

 A. Simplified schematic and predominant circuitry proposed to produce presynaptic inhibition of primary 

afferents. It is thought that GABAergic axo-axonic synapses activate postsynaptic GABAA receptors 

which leads to a chloride efflux down its concentration gradient and consequent depolarization of primary 

afferent terminals.  B. Events leading to recording PAD as a DRP. 1. Afferent stimulation-evoked GABAA 

receptor activation. 2. Primary afferent depolarization (PAD). 3. The dorsal root potential (DRP) is the 

summed back-propagated electrical recording of PAD from a population of axons. 
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strong synaptically connected inputs 
[172]

.  Visceral spinal afferents can influence efferent 

activity by way of both extra-spinal and spinal reflexes.   

1.3.3.1  Extraspinal Reflexes 

Extraspinal reflexes are mediated by visceral afferent collaterals directly synapsing on 

postganglionic neurons in prevertebral (such as intestino-intestine reflexes in the inferior 

mesenteric ganglia 
[130]

 or direct connections in the stellate ganglia 
[208]

).  Yet no such 

direct connections have been found in the paravertebral ganglia 
[114, 117]

. These 

connections are likely mediated by peptidergic synapses 
[58, 94]

.  

1.3.3.2  Spinal Reflexes 

Similar to the somatic nervous system, visceral afferents can evoke a wide variety of 

reflex responses, both somatic and autonomic in nature.  Electrical stimulation of the 

visceral afferent nerves has been found to cause motor 
[64, 272]

, respiratory 
[4, 181]

, and 

cardiovascular responses 
[1, 33]

.  Mechanical and chemical stimuli to viscera have also 

elicited similar results but are less consistent for quantification purposes 
[187]

.  Visceral 

afferents are believed to connect to efferent pathways through disynaptic pathways 
[32, 

260]
. 

1.4  DESCENDING MONOAMINES 

The monoaminergic systems of the brainstem and hypothalamus are best described as 

neuromodulators. That is to say they modulate the general excitability of the systems to 

which they project.  Activation of each is associated with varying degrees of wakefulness 

and stress.  Noradrenergic centers are associated with vigilance and responsiveness, with 

noradrenaline (NE) release lowest during sleep 
[141]

 and increased during acute stress 
[183]

.  
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Serotonergic centers are associated with arousal, mood, thermoregulation, sexual 

behavior 
[87, 255]

, and the generation of movement, and serotonin (5HT) is released during 

arousal and stress 
[40]

.  Dopaminergic centers are involved in movement initiation, 

reinforcement, and emotion; dopamine (DA) is released during stress, locomotion, and 

after rewarding behavior 
[87, 125]

.    Overall, the monoaminergic systems are state-

dependently active. 

1.4.1 Descending Monoaminergic Projections to the Spinal Cord 

The monoamines (MAs) have profound actions on both sensory and motor spinal circuits, 

yet there are no known spinal origins.  5HT, NE, and DA all project from supraspinal 

centers into the spinal cord, with the densest concentration of terminals often in 

autonomic spinal nuclei 
[73, 103, 173, 266]

.   

1.4.1.1  Serotonin.   

5HT projections to spinal cord arise from nuclei in the pons and medulla, more 

specifically the nucleus raphe obscurus,  nucleus raphe pallidus, and nucleus raphe 

magnus, with the densest terminations in the IML, ventral horn, dorsal horn lamina I & 

II, and lamina X 
[26]

.  Raphe pallidus and raphe obscurus projections terminate only in the 

IML and ventral horn 
[150]

, while raphe magnus projects predominantly to the dorsal horn 

[22]
.  The vast majority of 5HT terminals in the IML end as classical synapses rather than 

acting by volume transmission 
[202]

, yet there is virtually no evidence for direct contact 

with primary afferent terminals 
[175]

.  This anatomical dichotomy between direct 5HT 

projections to SPNs and indirect projections near primary afferents likely reflects 

differential effects on autonomic efferents and afferents, respectively. 
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1.4.1.2 Norepinephrine and Epinephrine.  

The spinal cord receives noradrenergic projections from all pontine noradrenergic nuclei, 

including the locus coeruleus (LC), A5 and A7 cell groups 
[44-46, 73, 82, 266]

.  These cells 

project through the dorsolateral and ventral  funiculi and terminate throughout the spinal 

grey matter, with particularly dense projections in the superficial dorsal horn, around 

motoneurons in the ventral horn, and in the IML and other autonomic regions 
[44-46, 173, 

266]
.  Projections from the brainstem nuclei appear anatomically distinct, with A5 and A7 

nuclei predominantly terminating in the ventral horn and IML while LC axons heavily 

project to the dorsal horn 
[82]

. 

Adrenergic projections to the IML originate in the C1 cell group of the ventrolateral 

medulla. Adrenergic projections to the spinal cord terminate almost exclusively in the 

IML (and adjacent in the lateral funiculus), around the central canal, and in a thin region 

connecting these two areas 
[177, 216]

.  The concentration of adrenergic terminals is 

estimated to be much smaller than noradrenergic terminals 
[73]

 

1.4.1.3 Dopamine.  

Presumed dopaminergic projections to the spinal cord arise in the dorsal hypothalamus 

and caudal thalamus, exclusively from A11 nucleus in the rat and predominantly the A11 

(with some A10 projections) in the mouse 
[19, 205]

.  The highest density of DA terminals 

are found in the IML and around the central canal in the thoracic and upper lumbar cord 

[148]
, yet strong DA labeling was seen in all regions of the spinal cord, excluding the 

substantia gelatinosa 
[105]

.  Like 5HT, the vast majority of DA terminals in the IML end as 

classical synapses. However, in the thoracic dorsal horn, over 75% of the projections did 
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not 
[214]

, supporting actions by volume transmission in this region.  This again suggests 

differential activation of afferents and efferents by DA. 

Surprisingly, recent evidence questions the DA-composition of the A11 nucleus.   A11 

neurons are tyrosine hydroxylase-positive but DOPA-decarboxylase and DA-transporter 

negative 
[14]

, suggesting that these projections are not actually dopaminergic but rather L-

DOPAergic.  While this needs to be explored further, this pathway and/or spinal 

dopaminergic receptors are implicated in both anti-nociception 
[74]

 and modulation of 

spinal reflexes 
[47]

. 

1.4.2 Effects of Monoamines on Sympathetic Preganglionic Neurons 

Monoamine projections to the spinal cord often mimic the ladder-like distribution of 

SPNs 
[73]

.  The monoamines have complex modulatory actions on neurons, often based 

on the receptors activated.  They can affect neuronal excitability by both modulating ion 

channels directly as well as by activating common signal transduction pathways that then 

modulate voltage- and ligand gated ion channels (monoamine receptor subtypes, their 

common signal transduction pathways, and potential actions are summarized in Figure 

1.5).     While the monoamines clearly project strongly to the IML, their modulatory 

actions on SPNs have been subject to debate over the last couple of decades.  The 

following is a summary of their presumed actions. 
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Figure 1.5 Mechanisms of neuromodulation.   

A. Table of common signal transduction pathways and monoamine receptor subtypes coupled to them.  Note 

serotonin, norepinephrine, and dopamine all have common actions on adenylyl cyclase (AC) and 

phospholipase-C (PLC) depending on receptor subtype activated.  B. Example of potential sites of 

neuromodulation and receptor subtypes activated, here with a serotonergic neuron.  Presynaptic G i-coupled 

receptors have been shown to have facilitatory actions on  voltage-gated and Ca
2+

-dependent K
+
 channels 

while inhibiting Ca
2+ 

channels and neurotransmitter release.  Postsynaptic receptors positively or negatively 

couple to AC and PLC, as well as to voltage and ligand gated ion channels, resulting in changed properties of 

the postsynaptic neuron. Not all neurons have all types/locations of receptors. C. Examples of 

neuromodulation: neuromodulators can have actions on  (i) action potential shape, (ii) state transitions to 

include rhythmic activity, (iii) changes in synaptic transmission (excitatory postsynaptic potential evoked by 

synaptic activation at arrow), and (iv) changes in response to synaptic input (at arrow).  Images based on 

reviews in 
[62, 124, 176, 178]

. 
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1.4.2.1 Serotonin.   

Serotonin (5HT) strongly and directly depolarizes the majority of SPNs (90%) in spinal 

cord slices, presumably by activation of 5HT2-like receptors that are localized to the IML 

region 
[145]

. Similar 5HT actions have been observed in rat in vivo and spinal 5HT 

promotes sympathetic activity in renal, cardiovascular and bladder afferents, also 

presumably via 5HT2 receptor activation 
[144, 168]

.   Interestingly, the depolarizations were 

slow in onset, long lasting (longer than 10 minutes) and often irreversible, suggesting a 

long term and slow-acting neuromodulatory regulation of SPN function.  Methysergide 

and metergoline (5HT2C and 5HT1B/D receptor antagonists) also decreased spontaneous 

SPN discharge in intact but not spinally transected rats in vivo, suggesting tonic 

descending serotonergic activation 
[168]

.  5HT has also been shown to induce rhythmicity 

in SPNs recorded in vitro 
[198, 199]

 and to restore tail sympathetic rhythms when delivered 

intrathecally in the rat 
[163]

.  Lastly, 5HT potentiated sympathetic responses to N-methyl-

D-aspartate (NMDA) in the IML 
[43]

. 

 

1.4.2.2 Norepinephrine   

NE (norepinephrine) has been more extensively studied, with contrasting responses of 

SPNs.  Superfusion of NE onto spinal cord slices of the adult cat depolarized (30%), 

hyperpolarized (40%), or had mixed (14%) responses 
[273, 277, 278]

.  In the neonatal rat, 

only depolarizing responses were seen 
[220]

.  Similarly, excitatory postsynaptic potentials 

(EPSPs) and inhibitory postsynaptic potentials (IPSPs) could be evoked by stimulating 

the dorsolateral funiculus 
[220, 277, 278]

, the presumed descending noradrenergic tract 
[31]

. 

Both NE and stimulation evoked depolarizations were mediated by 1 receptors and 
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associated with a decreased KCa conductance, while hyperpolarizations were mediated by 

2 receptors and associated with an increased non-Ca
2+

 mediated K
+
 conductance  

[109]
.  

In vivo iontophoretically applied NE inhibited SPN firing in the adult cat and pigeon 
[53, 

95]
.  NE was also found to suppress the characteristic slow afterhyperpolarization 

following the action potential and often produced a spike afterdepolarization 
[274, 275]

.   

Additionally, NE was also able to induce rhythmic oscillations in previously quiescent 

cells and increase discharges of spontaneously active SPNs 
[276]

.  

Interestingly, biphasic responses to NE were observed in the adult cat and adrenaline was 

able to evoke hyperpolarizing responses in the rat 
[179]

.  Similarly, eliminating the slow 

IPSP or EPSP often unmasked the other, suggesting coexistence of both 1 and 2 

adrenoceptors. 

1.4.2.3 Dopamine.   

Few studies have examined the actions of DA in the spinal cord. Although dopaminergic 

neurons from the A11 hypothalamic region project to the IML, little is understood of its 

modulatory potential in SPNs.   

One study examined the effects of exogenously applied DA on unidentified but presumed 

SPNs in transverse slices.  The actions of DA were slow and long-lasting and were 

inhibitory (46%), excitatory (28%) or mixed (23%). The DA-induced depolarization was 

reported to be synaptically-mediated via D2-like actions, and the hyperpolarization 

directly acting via D1-like receptor-mediated actions 
[90]

.  However, the DA ligands used 

were at concentrations (up to 100 μM) that make interpretations of receptor selective 

actions uncertain. Further confounding the issue, in vivo microiontophoretic studies 
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suggest DA actions are inhibitory in the adult cat 
[53]

 while excitatory in the adult rat 
[144]

.  

Similarly, spinal application of DA excited rat renal sympathetic nerve activity 
[232]

, yet 

D2- like agonists block thermogenesis in response to cold in brown adipose tissue 
[191]

.   

In summary, given the multiplicity of MA receptors and their differential actions on 

signal transduction pathways, it is difficult to speculate too strongly on function. Overall, 

the conflicting reports on whether 5HT, DA, and NE actions are excitatory or inhibitory 

may be due to differences in spatial location, dose, selectivity of ligands, and 

experimental condition. Thus, there is a need for more controlled pharmacological and 

experimental methods to determine the functionally relevant actions of these 

neuromodulators on SPNs.  This dissertation will further investigate and clarify the role 

of MAs in modulating SPN excitability, and compare actions in the mouse to the species 

described above. 

1.4.3 Monoaminergic Modulation of Visceral Afferents 

Not only do the MAs densely project to the IML, they also project more diffusely 

throughout the dorsal horn (see 
[148]

 for DA; 
[166]

 for NE; and 
[26]

 for 5HT).  Preliminary 

studies suggest all three systems can influence visceral afferents, yet our knowledge of 

the modulatory actions of these descending systems is rudimentary at best. 5HT activates 

both peripheral and spinal colonic afferents, at least partially through 5HT3 receptors 
[101]

.  

NE inhibits viscero-motor and pressor responses to colorectal distension, acting via 2 

receptors 
[55, 186]

.  Lastly, DA has inhibitory like actions on the spinal pelvic-urethral 

reflex 
[271]

.   
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Given that spinal visceral afferents are thought to predominantly convey pain information 

to the CNS, some insight into the actions of descending monoamines may be inferred by 

what is known about their influence on spinal nociceptive processing.  NE generally 

inhibits nociception acting on presynaptic 2 receptors on primary afferent terminals 
[175]

. 

5HT, acting on 5HT1B/D receptors, acts to presynaptically inhibit nociceptive afferents, 

while 5HT2 and 5HT3 receptors actions appear to mediate pro-nociceptive actions 
[16]

.  

Similarly, DA can have both  anti-nociceptive and pro-nociceptive actions, acting on D2-

like and D1-like receptors respectively 
[175]

.  However, DA actions may be dose sensitive, 

with low concentrations leading to anti-nociception and high concentrations leading to 

pro-nociceptive effects 
[192]

.   

While the monoamines are traditionally thought to inhibit nociception, more complex 

neuromodulation is often the case, depending on the site of action and receptor subtype(s) 

activated. 

1.4.3.1 Monoaminergic Modulation of Visceral Afferent Presynaptic Inhibition 

While monoaminergic modulation of PAD has been shown in group II muscle afferents 

[24, 233]
, and both high and low-threshold cutaneous afferents 

[75, 129, 206]
, the modulatory 

actions of the descending monoamines on presynaptic inhibition in visceral afferents is 

currently unknown 
[219]

.  The second part of this dissertation will therefore address 

whether or not changes in the body’s general state of arousal influences the magnitude of 

visceral afferent input received by the CNS. 



24 

 

1.5 USE OF TRANSGENIC MOUSE MODELS IN STUDIES ON CNS FUNCTION AND 

DYSFUNCTION 

Given the relative scarcity of studies on spinal autonomic function, the work detailed 

above was done in various animal models, including cat, rat, and guinea pig.  Yet mouse 

models are rapidly becoming the preferred model for many areas of biology, due to the 

increasing number of powerful transgenic approaches being developed.   Transgenic 

technologies are particularly well suited to the study of the central nervous system, 

allowing characterization of circuit operation in ways that were otherwise impossible.  

This includes expression-based neuron identification, which was used in the present work 

to unambiguously identify SPNs in the IML.   

Recently, several groups have utilized genetic markers to identify and study 

subpopulations of spinal neurons and initiated an exciting trend towards characterizing 

the properties of these molecularly-identified neurons, based on their early expression 

with transcription factors (e.g. 
[138]

).  In this case, the homeodomain transcription factor 

Hb9 is expressed by embryonic motoneurons and SPNs 
[11, 252, 267]

.  HB9-GFP mice were 

generated that demonstrate strong green fluorescent protein (GFP) fluorescence 

detectable in SPN axons, dendrites, and somas from embryonic day 9.5 to adult 
[269]

.  I 

used this mouse model to visualize SPNs for whole-cell patch clamp recordings (Chapter 

3), immunohistochemistry of receptor subtypes present on SPNs (Chapter 3), and 

identification of SPN axons in the periphery (Chapter 4). 

Additional advantages for transgenic mouse models lay in the possibilities ahead for the 

study of spinal autonomic function.  Transgenic and molecular approaches amenable to 
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studies on spinal autonomic function include: conditional neuronal knockout/silencing of 

molecularly distinct cell populations 
[92]

, optogenetics, 
[61, 96]

, and selective retrograde 

tracing of monosynaptically connected neurons 
[242]

.  Together with well-established 

electrophysiology and neuroanatomical techniques, elegant studies can be undertaken to 

define functional organization and alterations by disease or injury.  Particularly in the 

case of the autonomic nervous system, these approaches can help more rapidly 

investigate this understudied area. 

1.6 SUMMARY AND GOALS  

The autonomic nervous system is thought to function largely without conscious control or 

sensation.  However, our knowledge about the spinal circuits that both control 

sympathetic output and modulate visceral input is limited.   The monoamines, acting as 

general modulators of spinal excitability, have generally opposing actions on somatic 

afferent and efferent spinal sites: largely inhibiting afferent activity while increasing the 

excitability of motor circuits.  Yet their actions on autonomic circuits are less known.   

Transgenic approaches have revolutionized and hastened our understanding of 

mammalian CNS circuit function in many areas, and have the ability to similarly increase 

our knowledge of spinal autonomic function.  The first major goal of this thesis, 

therefore, was to establish the mouse as an animal model for the study of spinal 

sympathetic function.  Using this model system, this dissertation sought to (i) 

characterize the CNS sympathetic ‘final common output’ by determining the recruitment 

properties of spinal SPNs [Chapter 2], (ii) characterize the actions of three prominent 

monoamine transmitters (5HT, NE, and DA) on SPN excitability [Chapter 3], (iii) 
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provide an anatomical appraisal of putative receptor subtypes involved in altering SPN 

excitability using immunohistochemistry [Chapter 3], and (iv) integrate these findings 

with the studies of monoamine transmitter modulation of visceral afferent inputs by 

examining actions on primary afferent depolarization (presynaptic inhibition) and 

visceral afferent-evoked reflexes [Chapter 4].  Through this research and subsequent 

analysis, I aimed to gain a better understanding of how these descending modulatory 

systems effect spinal control of the autonomic nervous system as a whole. 
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SYMPATHETIC PREGANGLIONIC NEURON INTRINSIC 

PROPERTIES 

The work in this chapter is published in the Journal of Neurophysiology in 2010 

(103:490-8) and titled: Heterogeneity of membrane properties in sympathetic 

preganglionic neurons of neonatal mice: evidence of four subpopulations in the 

intermediolateral nucleus (doi: 10.1152/jn.00622.2009). 

2.1 ABSTRACT 

Spinal cord sympathetic preganglionic neurons integrate activity from descending and 

sensory systems to determine the final central output of the sympathetic nervous system. 

The intermediolateral column has the highest number and density of SPNs and, within 

this region, SPN somas are found in distinct clusters within thoracic and upper lumbar 

spinal segments. Whereas SPNs exhibit a rostrocaudal gradient of end-target projections, 

individual clusters contain SPNs with diverse functional roles. Here we explored 

diversity in the electrophysiological properties observed in Hb9-eGFP-identified SPNs in 

the IML of neonatal mice. Overall, mouse SPN intrinsic membrane properties were 

comparable with those seen in other species. A wide range of values was obtained for all 

measured properties (up to a 10-fold difference), suggesting that IML neurons are highly 

differentiated. Using linear regression we found strong correlations between many 

cellular properties, including input resistance, rheobase, time constant, action potential 

shape, and degree of spike accommodation. The best predictor of cell function was 

rheobase, which correlated well with firing frequency-injected current (f-I) slopes as well 

as other passive and active membrane properties. The range in rheobase suggests that 
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IML neurons have a recruitment order with stronger synaptic drives required for maximal 

recruitment. Using cluster analysis, we identified at least four subpopulations of SPNs, 

including one with a long time constant, low rheobase, and high f-I gain. We thus 

propose that the IML contains populations of neurons that are differentiable by their 

membrane properties and hypothesize they represent diverse functional classes. 

2.2 INTRODUCTION 

Sympathetic preganglionic neurons (SPNs) integrate activity from descending and 

sensory systems to determine the final central output of the sympathetic nervous system.  

The ILp (also known as the intermediolateral column or nucleus (IML)) has the highest 

number and density of SPNs 
[194, 210]

, and within this region SPN somas are found in 

distinct clusters in each spinal segment.  Their dendrites are mainly oriented 

rostrocaudally within the lateral funiculus and to a lesser extent medially within the grey 

matter toward the central autonomic area in lamina X, thus forming a ladder-like 

distribution symmetric around the central canal 
[7, 220]

.   SPNs are segmentally organized 

and exhibit a rostrocaudal gradient of end-target projections, yet individual clusters 

contain SPNs with diverse functional roles 
[77]

.   

The cellular physiological properties of SPNs that lie in the IML have been investigated 

in rats, guinea pigs, and cats to some extent 
[59, 89, 108, 197, 220, 236]

, largely using thick 

transverse (400-500 m) slices in vitro.  Action potentials are notable for long 

afterhyperpolarizations mediated largely by Ca
2+

 dependent transient- and sustained K
+
 

conductances.  Other conductances observed include: a fast 4-AP-sensitive and slower 

Ba
2+

-sensitive transient outward rectifier (A- and D- type respectively), an atypical K
+
- 
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mediated sustained outward rectifier with insensitivity to Cs
+
 and TEA, an anomalous 

inward rectifier, and a low-voltage activated T-type Ca
2+

 conductance  
[180, 220, 270]

.  While 

IML SPNs are traditionally treated as a homogenous group, there are some notable 

electrophysiological differences.  Spontaneous activity has been observed in a subset of 

SPNs in the neonatal rat and adult guinea pig, and is sometimes rhythmic 
[235]

.   

Additionally, strong electrical interactions have been observed in a subpopulation of 

SPNs, resulting in a low input resistance in these neurons 
[151]

.  Lastly, a number of 

investigators report mixed actions of the monoamines on SPNs 
[89, 90, 273, 277, 278]

, 

suggesting different populations may have different receptor configurations. 

Recently, an enhanced green fluorescent protein (eGFP) labeled transgenic mouse (JAX 

laboratories) has been generated that identifies SPNs based on coupled expression to the 

HB9 homeodomain protein 
[269]

, greatly facilitating ease of identification for 

electrophysiological and histochemical analyses (see Figure 2.1).  The current study 

represents the first characterization of membrane properties of SPNs in this mouse model, 

and provides the first detailed appraisal of SPN repetitive firing properties.  Lastly, we 

propose a novel classification scheme to differentiate SPN populations based on their 

electrophysiological properties.   
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2.3 MATERIALS AND METHODS 

All procedures described here comply with the principles of The Care and Use of 

Animals outlined by the American Physiological Society and were approved by the 

Emory University Institutional Animal Care and Use Committee. 

 

Figure 2.1 HB9-GFP fluorescence in transverse slice permits selective targeting of SPNs in the IML.  

A. Typical transverse slice showing GFP+ SPNs in the IML (arrow) as well as additional neurons including 

motoneurons (circled). B. A similar transverse section of a 250 µm slice that was subsequently immersed in 

fixative and mounted on a slide for confocal z-stack of 32 images (1.33 mm optical section thickness, or 

42.56 mm total section thickness) imaging of overall distribution of GFP+ neurons and morphological 

integrity. Note the abundance of SPNs in autonomic regions compared to motoneurons in the ventral horn. 

Additionally labeled neurons may be HB9 interneurons or ectopic GFP expression 
[54, 269]

 or additional 

SPNs whose identity would require retrograde labeling for verification. 
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2.3.1 Electrophysiology and Slice Preparation 

All experiments were performed in transgenic mice expressing HB9-eGFP (JAX 

laboratories; known to label SPNs), postnatal day 3-9.  Animals over age p6 were 

anesthetized with 10% urethane (2mg/kg ip) and placed on ice to slow the heart rate.  All 

animals were decapitated, eviscerated, and the spinal cords removed.  The T8-L2 section 

of the spinal cord was isolated and sliced into thick transverse (400m) and thin 

horizontal (200 m) sections using a vibrating blade microtome (Leica VT1000 S). Initial 

removal of the spinal cord and slicing were performed in cooled (4 °C), oxygenated (95% 

O2, 5% CO2)  solution containing (in mM) 250 sucrose, 2.5 KCl, 2 CaCl2, 1 MgCl2, 25 

glucose, 1.25 NaH2PO4, and 26 NaHCO3, pH 7.4.  Slices were left to recover for at least 

1 hour.  

The recording chamber was continuously perfused with oxygenated King’s ACSF (in 

mM: 128 NaCl, 1.9 KCl, 2.4 CaCl2, 1.3 MgSO4, 10 D-glucose, 1.2 KH2PO4, and 26 

NaHCO3; pH 7.4) at a rate of ~2ml/ minute. Patch clamp recordings were made from 

fluorescently-identified SPNs with patch pipettes of resistance 4-8 MΩ.  The standard 

intracellular recording solution contained (in mM): 140 K-gluconate; 11 EGTA; 10 

HEPES; 1 CaCl2, 35 KOH, 4 Mg-ATP; 1 tris-GTP; pH, 7.3.  GTP and ATP were 

included in pipettes to prevent rundown of evoked currents.   When assessing the effects 

of intracellular Cs
+
, the intracellular solutions contained 140 CsF, 11 EGTA, 35 KOH, 10 

HEPES, 1 CaCl2, pH 7.3.  

Whole cell patch-clamp recordings were undertaken at room temperature using the 

Multiclamp amplifier (Molecular Devices, Sunnyvale, CA).  eGFP
+
 SPNs were identified 
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in the intermediolateral column using epifluorescent illumination  (Figure 2.1) with cell 

location further verified with differential-interference contrast optics
 
(DIC). Voltage- and 

current-clamp data were acquired on the computer using pClamp 10 acquisition software 

(Molecular Devices).   

2.3.2 Quantification of Membrane Properties 

Immediately
 
after rupture of the cell membrane (in voltage clamp at –90

 
mV), the 

current-clamp recording configuration was used to determine
 
resting membrane potential.  

Junction potential was corrected for after recording, experimentally derived previously to 

be 10mV 
[158]

.  In current clamp configuration, electrode resistance was compensated for, 

and ranged from 8-15 MΩ.  Unless otherwise noted, cells were brought to -70 mV 

membrane potential (Vm) by injecting bias current, and a series of hyperpolarizing and 

depolarizing current steps 1 second in duration were applied. The membrane time 

constant (m) was found by fitting the first 500ms of the membrane charging response to 

small hyperpolarizing current steps with one or two exponentials.  In cases where the data 

was better fit with two exponentials, the longest exponential was used as m as suggested 

by Rall 
[209]

 and previously calculated in SPNs 
[197, 270]

.   Additionally in these cases, the 

equivalent cylinder electrotonic length (L) was estimated using the formula:  L= π (τ0/τ1 -

1)
-1/2

, where 0 is m and 1 refers to the first equalizing time constant 
[209]

.  m was 

averaged for hyperpolarizing current steps causing a change in membrane potential less 

than 20mV.  Current-voltage (I-V) plots were generated from voltage clamp recordings.  

Electrode series resistance was uncompensated in voltage clamp recordings but was 

subtracted in current clamp recordings. Series resistance values ranged between 15-38 

MΩ. As these values are one to two orders of magnitude less that measured membrane 
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resistance, the uncompensated voltage drop across the electrode should not introduce 

significant error.  In voltage clamp, cells were held at -90 mV and a series of voltage 

steps (-140 mV to 0 mV, 500 ms duration) were applied. The input resistance (Rin) was 

calculated by fitting a portion of the steady state I-V curve slightly negative to resting 

membrane potential (-70 to -90mV) with a straight line. Membrane capacitance (Cm) was 

determined from Multiclamp Commander automatically, by fitting the capacitive 

transient to a brief 10mV voltage step and using the formula:m=  Rin x Cm.  Peak inward 

current was measured as the maximal transient inward current obtained following voltage 

steps. 

Active properties were averaged for all spikes at the lowest spike triggering current step.  

The threshold voltage (Vth) was determined by detecting the maximum 2
nd

 derivative in 

phase space (dVm/dt versus Vm) for each spike 
[226]

.  The spike amplitude and 

afterhyperpolarization (AHP) magnitude was taken from this voltage threshold, and the 

spike overshoot calculated as the portion of the spike above zero mV.  Duration of the 

action potential was measured as the time above one-third of the amplitude 
[270]

.  

Duration of the AHP was measured as the time below one-tenth of the AHP magnitude.  

Rheobase was the minimum current injection required to elicit a spike.  For frequency-

current (f-I) analyses, both mean frequency and instantaneous frequency (based on the 

interspike interval between the first two spikes) were found.  Data from neurons not 

showing electrode compensation in current clamp were discarded. 
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2.3.3 Statistical Analysis 

All parameter values are reported as mean ± S.D.  Matlab software was used to compute 

correlation coefficients between membrane properties, and to determine p-values for each 

correlation.  Unless otherwise noted, only those with p<0.05 were used. For some 

parameters with statistically significant correlations, linear regression with a least-squares 

fit was computed for either a straight line, y=mx+b, or logarithmic line, y=bm
x
. 

Cluster analysis was performed using a Partition Around Medoids (PAM) method 
[128]

 

from Libra:  a MATLAB Library for Robust Analysis.  In short, the PAM method 

minimizes the sum of dissimilarities between data points, to partition data into k clusters.  

This algorithm was run on k=2-10 clusters, with each parameter normalized and centered.  

Both the Calinski-Harabasz 
[34]

 and Silhouette 
[128]

 indices were calculated for each 

cluster number, each giving a weighted comparison between intra- and inter-cluster 

differences.  These indices were maximized to determine the optimal number of data 

clusters. 
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2.4 RESULTS 

2.4.1 General Membrane Properties 

No significant difference in membrane properties was seen between thin horizontal and 

thick transverse slices, therefore the data were combined. Data were obtained from 39 

neurons and membrane properties quantified as described in the methods section.  Their 

properties are summarized in Table 1.   The mean resting potential (Vrest) was -60 ± 7 

mV, ranging between -44 and -85 mV.  The input resistance (Rin) was 1.1 ± 0.6 GΩ, 

ranging from 260 MΩ to 2.6 GΩ with an approximately normal distribution but with a 

greater spread in high resistance values (not shown).  The mean membrane time constant 

(τm) was 92 ± 44ms, ranging between 36 to 184 ms, with an apparent bimodal distribution 

(not shown).   Frequently, voltage responses to large current pulses were well fit with 

single exponentials, yet smaller current steps were better fit with double exponentials, 

also seen in the neonatal rat 
[197]

.  For those charging curves where double exponential fits 

were easily distinguished, electrotonic length L was estimated to be 1.83 ± 0.27 (n=17).  

Rin correlated well with both m (ρ= 0.65, p=0.001) and Cm (ρ= -0.50, p= 0.01) indicating 

that variations in both membrane resistivity and cell size account for much of the range of 

resistances seen.   

The relationships among and between active and passive membrane properties were 

quantified (Figure 2.2).  A color-coded correlation matrix compared significance of 

correlations among the membrane properties measured. The best predictor of cell 

function was rheobase, which accounted for 10.5% of the variance seen.  Rheobase was 

positively correlated with threshold voltage (Vth), negatively correlated with Rin, mand 
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peak inward current (Ipeak) and weakly negatively correlated with both mean and 

instantaneous firing frequency – injected current (f-I) slopes, which fell just shy of 

statistical significance (ρ=-0.33, p=0.08 for both).  The early peak inward current 

(presumably Na
+
 dominated) contributed greatly to the cell’s active properties, as Ipeak 

was inversely correlated to both Vth and rheobase.  Additionally, action potential (AP) 

height was inversely correlated to AP width and directly correlated to Vth, further 

highlighting the important role of Na
+
 channel kinetics in SPN behavior.  Lastly, the 

pronounced AHP magnitude was directly correlated to both mean and instantaneous f-I 

slopes, suggesting a strong modulatory role of the underlying currents on SPN 

excitability. 

While not shown in the figure, age of mouse used was also a factor, showing a strong 

positive correlation with Ipeak (ρ=0.73, p=3e
-5

), a weaker positive correlation with AHP 

magnitude (ρp=0.05), and a negative correlation with mρp=0.03).  This 

would suggest that as the mouse ages, the density of voltage gated Na
+
 and K

+
 channels 

Table 2.1: Summary of membrane properties 

Property  mean  ±   S.D. n 

Resting membrane potential (mV) -59.8 ± 7.4 38 

Input resistance (GΩ) 1.14 ± 0.60 38 

Time constant (ms) 92.4 ± 43.7 30 

Capacitance (pF) 32.8 ± 14.1 25 

Action potential amplitude (mV) 57.1 ± 8.9 30 

Action potential overshoot (mV) 11.8 ± 9.6 30 

Action potential duration (ms) 6.3 ± 1.4 30 

Threshold voltage (mV) -45.3 ± 5.8 30 

Rheobase (pA) 32.7 ± 21.4 30 

Afterhyperpolarization magnitude (mV) 15.2 ± 3.6 30 

Afterhyperpolarization duration (ms) 253.3 ± 124.5 23 
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increases and membrane resistivity decreases, a pattern supported by motoneuron 

research 
[190, 261]

.  

2.4.2 Anomalous Inward Rectification 

We next examined evidence of voltage-gated channels observed in these neurons 

compared to those reported previously in guinea pig and rat. In current clamp mode, a 

number of SPNs exhibited an inward rectification or a fall in input resistance in response 

to larger hyperpolarizing current steps.  This rectification was further explored and 

quantified in voltage clamp.  In response to 500 ms voltage steps (-130 to 0 mV, 10 mV 

steps), 24/38 SPNs (63%) exhibited an increased conductance (mean change 492 pS) at 

membrane potentials less than -80mV (Figure 2.3B).  This conductance was 

instantaneous and sustained, and consistent with that seen in the neonatal rat 
[270]

.  

2.4.3 Transient Outward Rectification 

As seen in the guinea pig and rat 
[108, 180, 270]

, all neurons displayed a transient outward 

rectification. This could be seen in current clamp as either a delayed return to resting 

membrane potential from hyperpolarizing current steps (10-40pA, 1 s duration; Figure 

2.3Ai), or as a delay in time to fire the first action potential with depolarizing current 

steps from a hyperpolarized membrane potential of -90 mV (Fig 2Aii).  This was further 

investigated in voltage clamp configuration, where voltage steps (500 ms, 10 mV steps) 

were applied from a hyperpolarized holding potential (-90 mV).  An outward transient 

current was observed with mean onset of -50.0 ± 6.7 mV, and always with a lower 

threshold than the sodium spike (Figure 2.3B).  Decay was best fit by double 

exponentials, with the longest tau at onset of 160 ± 52 ms (Figure 2.3C).   At least a 
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portion of this transient outward current noticeably persisted when Cs
+
 replaced K

+
 in the 

intracellular solution (n=6; inset Fig 2.3B). 

2.4.4 Repetitive Firing 

In current clamp from a -70mV holding potential, 90% (39/43) of SPNs fired repetitively 

over a wide range of current injections, with the remaining 4 displaying an initial burst or 

single spike phenotype.  Frequency-current (f-I) relationships were measured for both 

instantaneous and mean firing frequency at each current step.  SPN f-I instantaneous 

slopes had a mean value of 0.228 ± 0.125 Hz/pA with lower values for mean f-I slope 

(0.196 ± 0.106 Hz/pA).  Peak firing frequencies in individual neurons reached up to 28 

Hz before depolarization block occurred. 

Of SPNs firing repetitively, 70% (21/30) displayed spike frequency adaptation (SFA), or 

a slowing of the firing rate with long current steps (Figure 2.4A).  SFA was best fit by a 

logarithmic linear regression (Figure 2.4B) and only cells with established SFA are 

shown (fits significantly different from no correlation, p<0.05).  The averaged slope (m) 

of the logarithmic fit at each current step had a mean value of 0.95 ± .02.   This slope was 

inversely correlated with input resistance, i.e. the greater Rin, the more rapidly spike 

frequency declined (Figure 2.4C).   
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Figure 2.2 Membrane property correlations.  

Figure shows correlation coefficients between membrane properties, with values close to 1 showing strong 

positive relationships and values close to -1 showing strong negative relationships. The firing frequency–

injected current (f–I) slope refers to instantaneous firing frequency. Asterisks (*) denote statistically 

significant correlations (P < 0.05) and “?” denotes correlations with 0.05 <  P < 0.1. 
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Figure 2.3 Transient outward and anomalous rectification.  

Ai. sample membrane response to a series of current steps (1 s duration, 15 to 10 pA, 5-pA steps), holding 

current 12.6 pA. Asterisk (*) indicates anomalous inward rectification;□ indicates transient outward 

rectification, seen as a much longer repolarization time to hyperpolarizing current steps. Aii. Sample 

voltage response to a series of injected current pulses (1 s duration,10-pA steps) from a hyperpolarized 

holding potential. Note delay to first spike, due to transient outward conductance. B. Sample current 

response to a series of voltage-clamp steps (30 to 40 mV, 10-mVsteps) from a hyperpolarized holding 

potential of 90 mV. Asterisk (*) indicates instantaneous increased conductance at hyperpolarized 

membrane potentials; □ indicates transient outward conductance, here activated at 70 mV and more 

pronounced at 60 and 50 mV. Next voltage step (40 mV) produced an inward action current (not shown). 

Inset shows sample current response of a different cell to a 50 mV voltage step, when Cs replaced 

intracellular K. Note the presence of the transient outward conductance. C. Sample current–voltage plot of 

steady-state currents obtained during voltage-clamp recordings, revealing inward rectification at potentials 

less than about 80 mV. 
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Figure 2.4. Repetitive firing properties.  

A. Sample response to 20-pA current injection (1-s duration). Note the slowing of the firing rate with each 

spike. B. Frequency response of a typical sympathetic preganglionic neuron (SPN) showing spike-

frequency adaptation (SFA) to multiple current injections, logarithmic scale. m was the natural log of the 

slopes of the lines shown. C. Correlation between input resistance (Rin) and SFA slope m, averaged for 

each cell. Only cells with statistically significant SFA are shown. 
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2.4.5 Persistent Inward Current 

When intracellular K
+
 was replaced with Cs

+
 to block most voltage-gated K

+
 

conductances, the steady state current-voltage plot revealed a region of negative slope 

conductance (Figure 2.5A).  This negative slope region indicates the presence of a 

persistent inward current (PIC) 
[99]

.  Net inwards currents were absent in several neurons 

at least partly due to the presence of an outward leak conductance, but could be easily 

calculated as a deviation from linear leak slope (see Figure 2.5B). The persistent inward 

current in the presence of Cs
+
 had an average onset of -76 ± 5 mV and peak magnitude 

21.6 ±13.5 pA (n=8).  In comparison, with K-gluconate intracellular solution, the effects 

of the PIC were largely hidden by the dominating contribution of activated outward 

currents during voltage steps, but could be detected during a slow voltage ramp (8mV/s), 

as a slight deviation from the linear leak slope (Figure 2.5C, n=2/2). 

2.4.6 Cluster Analysis 

Given the wide range of membrane properties recorded, we wondered whether SPNs 

could be classified into electrophysiological clusters.  Using cluster analysis of the 

parameters measured for each cell and the maximum of the silhouette and Calinski-

Harabasz indices, data was best sorted into four clusters (Figure 2.6A).  A one-way 

ANOVA was performed on each parameter, resulting in statistically significant 

differences between clusters in , rheobase, f-I slopes, AP width, and Ipeak (Figure 2.6B).  

The mean values are summarized in Table 2. The four groups are as follows: Group 2 and 

3 SPNs are recruited first (have lower rheobases), have relatively long ms and mid-range 

Ipeak values.  Group 2 neurons have lower f-I gains and longer AP durations, while Group 
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3 SPNs have higher f-I gains and shorter AP durations.  Group 1 and 4 SPNs are then 

sequentially recruited, with group 1 SPNs having the largest and group 4 having the 

smallest Ipeak values of all groups. 

Table 2.2 Comparison of statistically significant parameter differences between clusters 

 

Note: superscripted numbers indicate statistically significant differences (p<0.05) from group noted. 

Group m (ms) Rheobase (pA) f-I slope (Hz/pA) 

1 56.7 ± 23.1
3
 36.3 ± 13.8

3,4
 0.15 ± 0.07

3
 

2 112.9 ± 53.1 20.0 ± 0.0
4
 0.17 ± 0.03

3
 

3 115.5 ± 43.8
1
 17.9 ± 8.5

1
 0.36 ± 0.13

1,2,4
 

4 83.1 ± 28.2 63.3 ± 23.4
1,2

 0.19 ± 0.08
3
 

Group Ipeak (pA) AP width (ms)  n   

1 2157.8 ± 270.3
2,3,4

 5.3 ± 0.7
2
 8   

2 1553.9 ± 363.4
1,4

 8.1 ± 1.6
3,1

 6   

3 1608.0 ± 473.7
1,4

 5.9 ± 1
2
 9   

4 837.3 ± 426.8
1,2,3

 6.7 ± 0.6 6   

2.4.7 Properties in Juvenile Mice 

In order to understand some of the physiological developmental changes, 7 SPNs were 

recorded from 3 juvenile mice, postnatal day 21-28.  Juvenile SPN recordings showed the 

anomalous rectification and transient outward currents described above for neonatal 

mice.  Juvenile SPNs exhibited shorter action potentials (3.6 ± 0.5 ms in juvenile versus 

6.3 ± 1.4 ms in the neonate, p=5e
-5

), larger spike overshoots (44.5 ± 14.6 mV in juvenile 

versus 21.9 ± 8.9 mV in the neonate, p =0.04) , and larger peak inward currents (4.2 ± 1.7 

nA in juvenile versus 1.6 ± .6 nA in the neonate, p=0.02; Figure 2.7A). Juveniles also 

had larger steady-state inward and outward currents during voltage clamp.  (Figure 

2.7B).   
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Figure 2.5 Persistent inward currents (PICs). 

A: average steady-state current response to a series of 500-ms voltage steps with a CsF- and K-gluconate–

based intracellular solution. Arrows denote the absence of anomalous rectifier and onset of negative slope 

conductance in CsF. B: sample neuron with a PIC resulting in negative conductance value, CsF-based 

intracellular solution. Arrows denote PIC onset and peak magnitude. C: PICs were largely masked by K 

conductances in K-gluconate– containing patch electrodes, but could be seen as small deviations from 

linear conductance during a slow voltage ramp (8 mV/s). 
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Figure 2.6 Cluster analysis.  

A. Analysis of cluster validity, using 2 different indices. Both indices peak at 4 clusters, signifying best fit 

for the data set. B. Distribution of cluster membrane properties as a function of rheobase. Bi. Groups 2 and 

3 have low rheobase values, with group 3 having larger f–I gains. Groups 1 and 4 are sequentially recruited 

and can be largely distinguished by rheobase values. Bii. Group 3 neurons have statistically larger m values 

than those of group 1 neurons. Biii. Group 1 neurons display statistically larger Ipeak values than those of 

both group 2 and group 3 SPNs and all have larger values than those of group 4 SPNs. 
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Figure 2.7 Neonatal and juvenile mice comparison.  

 A. Juvenile mice exhibit larger action potentials of shorter duration than neonatal mice. The also generate 

larger sodium currents, as seen by comparison of peak inward current during voltage clamp protocols. B. 

Steady state I-V relationship.  Steady state values for outward currents during voltage clamp also show 

increased magnitude for juveniles.  Overall this implies greater current flow for multiple ion types. 
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2.5 DISCUSSION 

Using eGFP-HB9-transgenics the present study undertook the first characterization of 

membrane electrical properties of sympathetic preganglionic neurons in the 

thoracolumbar intermediolateral nucleus of mouse. Studies were undertaken in either 

thicker transverse or thinner horizontal slices and membrane properties in these 

populations were indistinguishable. Given the strong rostrocaudal and mediolateral 

orientation of SPN IML dendrites, horizontal sections would be predicted to provide 

neurons with largely intact architecture.  However, while mediolateral dendrites are 

strongly present in utero 
[196]

, rostrocaudal projections have a relatively later maturation, 

(2 weeks postnatal; 
[72, 164]

), perhaps minimizing the level of dendrotomy in transverse 

slices at this age.  Consequently, it is likely that the SPNs recorded in transverse sections 

retained considerable rostrocaudal dendrites. 

A correlation matrix was used to identify relationships between active and passive 

membrane properties. One important observation was that rheobase - the amount of 

current required to recruit a neuron - was the best predictor of cell group and correlated 

with several other membrane properties. Given the obvious importance of SPN 

membrane excitability as the ‘final common CNS output’ of sympathetic neural activity, 

we also undertook a detailed examination of their firing properties. SPNs consistently 

demonstrated spike-frequency adaptation. In addition, the relation of firing frequencies to 

magnitude of current injection (f-I relations) generated slopes that varied considerably 

across the SPN population, indicating that SPNs represent a highly differentiated class of 

neurons. Indeed, cluster analysis subdivided this nucleus into four subpopulations. The 
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rostrocaudal range (T8-L2) sampled from potentially includes SPNs with five different 

end-target innervations 
[244]

. While outside the scope of the current study, it is possible 

this electrophysiological classification is influenced by end target differentiation, and 

warrants further investigation.  Regardless, the overall conclusion is that this population 

of output neurons constitutes a heterogeneous population, differentiated by their 

electrophysiological properties, with complex recruitment properties. 

2.5.1 Comparison to Membrane Properties Reported in Other Species 

Membrane properties measured here compare well with those reported previously in 

other mammalian species. Resting membrane potential values were similar to those 

reported in the neonatal rat, guinea pig, and adult cat 
[60, 108, 197, 273]

.  Since impalement-

induced leak conductance with sharp microelectrodes alters passive membrane properties 

[237]
, our whole-cell patch recordings can only be compared to patch-clamp recordings as 

reported in the neonatal rat 
[180, 197, 270]

.  Similar input resistance (Rin), membrane 

capacitance (Cm), and membrane time constant (m) values were observed [
[180, 197, 270]

; 

but see 
[270]

 for temperature-dependent differences in Rin].  The presence of multiple 

exponentials in the membrane charging curves in a number of neurons here was also 

reported in the neonatal rat 
[197, 270]

.  Multiple exponential responses are indicative of 

initial non-uniform distribution of membrane potential, likely due to a complex dendritic 

tree.  Values obtained for L are much greater than those found in patch-clamp recordings 

from CA3 pyramidal neurons 
[162]

 and even somatic motoneurons 
[253]

, known to have a 

very extensive dendritic arbor 
[211]

.  This suggests SPNs are not as electrically compact 

and their ability to integrate synaptic input from distal dendrites may be comparatively 

weak.  The functional consequences of this are currently unknown. 
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The use of neonatal animals in the current study may be subject to criticism, as the 

sympathetic nervous system of rodents is still maturing at this young age 
[20]

.  While end-

target responses to central sympathetic activation are not present until after the first week 

postnatal, level of tonic SPN activity and response to asphyxia and hypoglycemia in the 

neonate (1-2 days postnatal) were comparable to those in the adult rat 
[234]

.  Additionally 

in the rat, as early as embryonic day 14.5 SPNs are already positioned in the IML, central 

autonomic region, and areas in between 
[133, 196]

. At birth, SPNs in the IML have the 

characteristic ladder-like rostrocaudal and mediolateral projecting dendritic arbor, with 

the rostrocaudal dendrites elongating and cluster separation increasing during the first 

two weeks 
[72, 164, 195]

.  Since biochemical markers of synaptic activity and synaptic 

connections in sympathetic ganglia in the mouse greatly increase during this period 
[21]

, 

electrophysiological differentiation may play a role in forming appropriate synaptic 

connections.  Interestingly, the similarity of the above mentioned electrophysiological 

properties in the neonatal mouse to juvenile mice in our study, and adult cats and more 

mature rats in the work of others suggests that while development may affect the size of 

SPNs and magnitude of conductances, the overall functional aspects of SPNs are largely 

in place in the neonate.  Indeed, while the neonatal work in this study used animals with 

an overlapping age range as undertaken in rat (as young as P7), we also include even 

younger animals (P3) to demonstrate that SPN membrane properties are specified at a 

very early age.  Moreover, cluster analysis was able to separate the IML neurons into at 

least 4 discrete groups irrespective of age.  This is consistent with anatomical findings 

that morphology is also highly differentiated at birth 
[195, 204]

, supporting an early 

maturation of the IML SPN neuronal phenotype. 
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2.5.2 Active Conductances 

A transient outward rectification was present in virtually all SPNs as seen previously 
[60, 

108, 180, 197, 220, 270]
.   This transient conductance was partially insensitive to intracellular 

Cs
+
, inactive at resting membrane potential, and only released from inactivation with 

membrane hyperpolarization.  In voltage clamp, decay was best fit with double 

exponential decay, consistent with the dual component A-type K
+
 conductances noted by 

Wilson et al 
[270]

.  In neonatal rat SPNs this current acts to regulate firing frequency and 

contributes to spike repolarization and the afterhyperpolarization 
[180]

.  

Hyperpolarizations from resting membrane potential evoked inward rectification in most 

SPNs, and were sensitive to intracellular Cs
+
.  The conductance is similar to the 

anomalous rectification recorded in other SPNs 
[108, 180, 197]

, and may act to return SPNs to 

an excitable membrane potential after large inhibitory input. 

Blockade of most K
+
 conductances with Cs

+
 revealed the presence of a persistent inward 

current (PIC).  In somatic motoneurons, PICs are thought to be responsible for repetitive 

firing and membrane bistability 
[135, 139]

.   In our acute spinalized mouse SPNs, the PIC 

magnitude was usually small enough to be largely masked by outward K
+
 conductances 

with a K-gluconate based intracellular solution.  This may be due to the loss of 

descending monoaminergic input, which greatly facilitates PICs in motoneurons 
[107, 140]

.  

Given the strong descending monoaminergic projections to the IML, it is therefore 

possible that SPNs also possess the ability for bistable membrane behavior. 
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2.5.3 Repetitive Firing and Spike Frequency Adaptation 

Neonatal mouse SPNs showed repetitive firing over a wide range of current injections.  

Compared to intracellular recordings in guinea pigs and cats, instantaneous firing rates 

and f-I slopes were much greater 
[60, 108]

.  This is likely at least partly due to a reduced 

leak conductance in patch clamp recordings as compared to conventional sharp 

intracellular recordings 
[237]

.  Compared to somatic motoneurons, SPN f-I gain exceeded 

that in both the primary and secondary firing range by 10 fold 
[29]

 but this is also likely a 

reflection of markedly increased input resistance observed with patch recordings. Indeed, 

in patch clamp recordings in putative mouse motoneurons in culture, f-I gains and 

variability were remarkably similar 
[135]

.  The strong correlation between the AHP 

magnitude and f-I gain found in the present study supports a functional role of the AHP 

(and underlying conductances) in controlling cellular excitability.  Modulation of the 

AHP, such as that in response to noradrenaline in both the cat and rat 
[220, 275]

 and caffeine 

in the rat 
[231]

, could lead to direct changes in SPN response to synaptic input. 

In a majority of neonatal mouse SPNs, we describe a pronounced spike frequency 

adaptation (SFA). SFA in SPNs has been reported previously 
[60, 220]

, but has not been 

rigorously explored. In contrast, the mechanisms serving SFA have been detailed in 

mouse motoneurons 
[174]

.  In this study, modeling and patch clamp studies suggest that 

slow inactivation of the fast inactivating Na
+
 conductance is a key factor in SFA 

[174]
. 

This work contrasts previous notions on the primary importance of the AHP (see 

Discussion in Miles et al. 2005). The physiological relevance of SFA in motoneurons has 

been interpreted in relation to initial versus sustained force generation in muscle 
[239]

. 

Analogously, the relevance of SFA in SPNs may relate to the recruitment of 
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postganglionic neurons.  In our neonatal mouse SPNs, SFA decay was inversely related 

to Rin. Thus, the smallest conductance neurons underwent the greatest SFA. Whether 

these neurons innervate a different population of postganglionic neurons or have 

differences in synaptic transmission remains to be determined. 

The range of rheobase, Rin, and degree of SFA observed in SPNs could signify an 

organizational principle of recruitment with functional significance.  For example, 

somatic motoneurons exhibit a well-defined order of recruitment via the size principle, 

whereby motoneurons are recruited with increasing size, conduction velocity, and motor 

unit fatigability 
[100, 211]

.  In fact, lumbar SPNs in the adult cat have distinct differences in 

conduction velocity, responses to afferent stimuli, and voltage intensity for axonal 

recruitment based on their end-target innervations 
[118]

.   

SPNs normally fire at low frequencies 
[172]

, so it is worth questioning whether f-I curves 

are physiologically relevant at the higher range of firing frequencies. Peak firing 

frequencies observed here clearly exceed these steady state values, and many SPNs were 

not driven to their maximum firing potential. One possibility is that higher firing 

frequencies are reached during ischemia, drops in blood pressure and states of higher 

arousal such as the ‘fight or flight’ response. SPNs receive dense modulatory inputs from 

both brainstem and hypothalamic autonomic circuits 
[7, 19, 73, 150]

, many of which could 

greatly increase their excitability on a systematic level.  Indeed, addition of 

norepinephrine and serotonin has been shown to increase spontaneous discharge in SPNs 

in the neonatal rat 
[145, 165, 231]

 and adult cat 
[89, 276]

, often in a bursting rhythm with 

intraburst frequencies greatly exceeding steady state values. 
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Individual SPNs project to many postganglionic neurons (1:15 ratio in rat and 1:200 in 

human) and postganglionic neurons are innervated by multiple SPNs. The existence of 

both convergent and divergent synaptic inputs forming the postganglionic ‘autonomic 

motor unit’ indicates the importance of synaptic integration in their recruitment. Hence as 

a population, SPN firing properties will be critical in the temporal and spatial summation 

necessary to activate postganglionics. There appear to be two populations of SPNs based 

on synaptic strength on postganglionics - strong and weak - with strong synapses lacking 

P type Ca
2+

 channels and evoking currents individually capable of recruiting 

postganglionics 
[172]

. Thus, recruitment of postganglionics may only require the activity 

of individual SPNs. Conversely, weak inputs from multiple SPNs may also be used to 

recruit postganglionic neurons.  The relation between synapse strength and membrane 

properties remains to be determined. However, the initial high frequency firing of SPNs 

could act to potentiate synaptic transmission of weak synaptic connections while the 

slower firing induced by SFA could act to maintain potentiation without neurotransmitter 

depletion 
[157]

. 

In conclusion, the present study suggests that SPNs in the IML are comprised of multiple 

subtypes, easily distinguished by electrophysiological parameters.  We hypothesize that 

generation of target- and condition- specific responses of the sympathetic nervous system 

is largely derived from electrophysiological differentiation.  The easy visualization of 

SPNs afforded by their genetic labeling with Hb9-eGFP in transgenic mice allows for 

coupling future studies of electrophysiological results with immunohistochemistry, 

anatomy, and functional genomics for further exploration. 
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  CHAPTER 3

MONOAMINERGIC MODULATION OF SPN PROPERTIES 

3.1 ABSTRACT 

Given the species specific and seemingly contradictory actions of the monoamines on 

spinal sympathetic outflow, I sought to characterize the effects of dopamine (DA), 

norepinephrine (NE), and serotonin (5HT) on SPN intrinsic properties in the neonatal 

mouse and more clearly elucidate the effects of the monoamines on SPN excitability.  

Additionally, I developed a novel in vitro spinal cord and sympathetic chain preparation, 

which allowed me to assess the population efferent responses to visceral afferent 

stimulation and their modulation by the monoamines.  This included measures of spiking, 

synaptic potentials, and DC shifts in membrane polarity (a measure of membrane 

potential). Recordings were made from thoracic T11-T12 ventral roots, which likely 

contain more SPN than motor axons.  Lastly, I complemented physiological experiments 

on monoamine transmitter neuromodulation with immunohistochemical detection of 

putative 5HT, NE, and DA receptors underlying these effects.   

Each monoamine had a unique signature of effects.  5HT’s actions were the most 

uniform.  5HT consistently depolarized all intracellulary recorded SPNs, and increased 

their firing response to injected currents.  In a similar fashion, 5HT depolarized the 

ventral root DC recordings and increased spontaneous activity.  5HT concomitantly 

greatly depressed visceral afferent evoked responses in the ventral root.  Reflex 

depression and DC root depolarization occurred in a dose-dependent fashion with IC50 

and EC50 values in the sub micromolar range.  5HT2A and 5HT7 receptors observed in 
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SPN somas and processes support direct excitatory actions, while the absence of 5HT1 

receptors tested supports inhibitory actions on reflexes somewhere else in the reflex 

circuit. 

NE had mixed actions.  NE depolarized some intracellularly recorded SPNs while 

hyperpolarizing others.  Nonetheless, in all cases NE increased SPN firing responses to 

injected current.  NE also depolarized ventral root DC recordings in some mice with 

increased spontaneous activity, but hyperpolarized DC recordings in others.  Like 5HT, 

NE greatly attenuated visceral afferent-evoked reflexes with a sub-micromolar IC50.  

Direct actions are likely due to both 1a and 2a receptors on SPNs. 

Like NE, DA depolarized some while hyperpolarizing other intracellulary recorded 

SPNs. However, unlike NE and 5HT which increased membrane excitability, DA 

reduced firing responses to injected currents in some SPNs with increases in others. 

Interestingly, DA had dose-dependent actions on ventral root polarizations with lower 

doses depolarizing and higher doses leading to hyperpolarizations.  In contrast DA 

consistently depressed visceral-afferent evoked responses, but with IC50 values 5-10x 

higher than that observed with 5HT and NE.    Since I observed both D1-like (D5) and D2-

like receptors (D2,3) on SPNs with immunohistochemistry, mixed responses were expected. 

Overall, these results demonstrate that the monoamines have complex and differentiable 

actions on SPNs which coincide with the presence of numerous receptor subtypes 

expressed in SPNs. In contrast, the monoamines uniformly depress visceral afferent 

evoked reflexes by currently unknown receptors. Receptor selective pharmacology and 

additional immunolabeling studies are warranted.  
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3.2 INTRODUCTION 

Sympathetic preganglionic neurons (SPNs) integrate activity from descending and 

sensory systems to determine the final central output of the sympathetic nervous system.  

The intermediolateral column (IML)  has the highest number and density of SPNs 
[110]

, 

and within this region SPN somas are found in distinct clusters in each spinal segment, 

forming a ladder-like distribution symmetric around the central canal 
[31]

.  The 

monoamines dopamine (DA), norepinephrine (NE), and serotonin (5HT), all project from 

subcortical nuclei to the spinal cord 
[19, 103, 148, 266]

, often mimicking the ladder-like 

distribution of SPNs, suggesting profound neuromodulatory influence 
[73]

.   

While direct and indirect modulatory actions have been reported for NE, 5HT and DA on 

SPNs 
[54, 90, 145, 277]

, conclusions as to the overall actions are often contradictory.  5HT 

strongly and directly depolarized the majority of SPNs  in neonatal rat spinal cord slices 

in vitro 
[145, 155]

, and increased spontaneous firing in the adult cat in vivo 
[89]

.  NE evoked 

depolarizing, hyperpolarizing, and biphasic responses in adult cat spinal cord slices in 

vitro 
[275, 277, 278]

, while only depolarizations were reported in the neonatal rat 
[220]

;  

depolarizations were mediated by 1 receptors and hyperpolarizations mediated by 2 

receptors 
[109]

.  Reports on DA are less clear, with depolarizations, hyperpolarizations, 

and biphasic responses reported in the neonatal rat in vitro 
[90]

.  However, increases in 

firing in the adult rat 
[144]

 and decreases in the adult cat 
[53]

 have also been reported in 

vivo.   

Recently, our lab developed an in vitro slice preparation recording from fluorescently- 

identified SPNs in a GFP+-HB9 transgenic mouse line 
[282]

.  Given the species specific 
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and seemingly contradictory actions of the monoamines (MAs) on SPNs, we sought to 

characterize the effects of 5HT, NE, and DA on SPN intrinsic properties in the neonatal 

mouse and more clearly elucidate the effects of the MAs on SPN excitability.  

Additionally, in order to assess the modulation of populations of SPN efferents and spinal 

reflexes evoked by visceral afferents, we developed a novel in vitro spinal cord and 

sympathetic chain preparation.   

Previous work in the rat and cat has identified potential receptor substrates on which the 

descending monoamines could act.  Immunohistochemistry in the rat identified moderate 

labeling of 5HT2a receptors and weak labeling of 5HT5A receptors near the IML 
[63, 240]

 , 

while in the cat 5HT7 and 5HT2A receptors were identified in the IML and intermediate 

zone 
[189]

.  Immunohistochemistry in the rat showed 2A adrenergic receptors in the IML 

[243]
, and these data are  supported by autoradiographic evidence on sympathoadrenal 

SPNs in the rat 
[230]

. In the mouse, real time PCR and in situ hybridization indicated the 

existence of all DA receptors (D1-D5), with the highest incidence of D2 and D5 receptors, 

diffusely distributed throughout the spinal cord 
[281]

.  Immunohistochemistry in the rat has 

confirmed the presence of moderate D2 receptor labeling in the IML 
[256]

, while 

autoradiography in the rat has suggested the presence of both D3 and D1-like receptors 
[91, 

142]
.  To date, no one has investigated the location of any of the above mentioned 

receptors in the mouse spinal cord.   

The transgenic HB9-GFP mouse, with its strong labeling of SPN somas and processes, is 

an ideal model in which to study potential substrates of monoaminergic modulation in the 

spinal cord.  We therefore complemented our electrophysiological surveys with 

immunohistochemical techniques to identify potential receptors underlying the MA-
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induced changes in SPN excitability.  This three-pronged approach allowed us to more 

fully characterize the modulation of the descending MA systems. 

3.3 EXPERIMENTAL DESIGN 

All procedures described here comply with the principles of The Care and Use of 

Animals outlined by the American Physiological Society and were approved by the 

Emory University Institutional Animal Care and Use Committee. 

3.3.1 Slice Electrophysiology 

3.3.1.1 Dissection 

All experiments were performed in transgenic mice expressing HB9-eGFP (JAX 

laboratories; known to label SPNs), postnatal day 3-9.  Slice preparation followed the 

same protocols described in Chapter 2 for neonatal animals.  Briefly, neonatal animals 

were decapitated, eviscerated, and the spinal cords removed, and a T8-L2 section isolated 

and sliced into thick transverse sections (400m). Initial removal of the spinal cord and 

slicing were performed in cooled, oxygenated sucrose artificial cerebrospinal fluid 

(sACSF), containing (in millimolar [mM]): 250 sucrose, 2.5 KCl, 2 CaCl2, 1 MgCl2, 25 

glucose, 1.25 NaH2PO4, and 26 NaHCO3, pH 7.4.  Slices were left to recover for at least 

1 hour.  

The recording chamber was continuously perfused with oxygenated artificial 

cerebrospinal fluid (ACSF;  in mM: 128 NaCl, 1.9 KCl, 2.4 CaCl2, 1.3 MgSO4, 10 D-

glucose, 1.2 KH2PO4, and 26 NaHCO3; pH 7.4) at a rate of ~2ml/ minute. Patch clamp 

recordings were made from fluorescently-identified SPNs.  Unless otherwise noted, cells 
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were brought to -70 mV holding potential by injecting bias current and recorded in gap-

free mode to assess effects on membrane potential.  The current and voltage clamp 

protocols described in chapter 2 were used to quantify changes in membrane properties as 

described above.   

3.3.1.2 Application of Agonists 

5-hydroxytryptamine HCl (5-HT), norepinephrine bitartrate (NA), and dopamine HCL 

(DA) were obtained from Sigma-Aldrich.  The solutions were prepared from frozen stock 

solutions and bath applied at 10M, a concentration believed to be below the 

concentration where nonspecific binding actions have been observed 
[42, 84, 257]

. Each 

agonist was applied for 1-3 minutes, and a washout period of 10-20 minutes was allowed 

between drug applications.  Drug order was random, and often only one or two agonists 

were used per cell, due to the time constraints of the recordings. 

3.3.1.3 Quantifying Changes in Cellular Excitability 

Using the current step protocols applied before and during drug application, mean firing 

frequency was calculated for each current step.  Frequency – current plots were then fit 

with a logarithmic trendline using Microsoft Excel.  Matlab was then used to integrate the 

area under the logarithmic trendline (see Figure 3.1), both before and during drug 

application.  This integrated area was then used to quantify changes in cellular 

excitability, with statistical significance found using a paired t-test.   
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3.3.2 Ventral Root Potentials 

In both the rodent and human 

thoracic spinal cord, the number of 

SPN axons in the ventral roots greatly 

exceeds those of somatic 

motoneurons 
[18, 50, 154]

.  Therefore in 

order to examine net modulatory 

actions on thoracic spinal efferents 

(where SPNs dominate), both 

ongoing DC changes in ventral root 

potential (VRP) and evoked VRP 

responses to visceral afferent 

stimulation were assessed with DC 

recordings. Electrical stimulation of 

the greater splanchnic nerves has 

often been used to study visceral afferent inflow (e.g. 
[3, 4, 64, 225, 251]

 ), as they contain 

afferents of the gut, pancreas, spleen, kidneys, testis/ovaries, and pelvic organs 
[187]

, and 

this paradigm was used again here.   

3.3.2.1 Dissection 

All experiments were performed at postnatal day (P) 5-8 litter of mice crossed from 

transgenic hemizygote HB9-eGFP females (JAX laboratories) and inbred C57/BL6 

males.  Mice were either HB9-eGFP
+/-

 heterozygotes or wild type.  Animals over age P6 

were anesthetized with 10% urethane (2mg/kg ip) before decapitation.  All animals were 

Figure 3.1 Quantifying changes in SPN excitability.   

A) Response of a single neuron to increasing current 

steps (multiples of 5pA, 1 s duration).  Bottom traces 

shows current steps.  B) Mean firing frequency for each 

current step plotted.  Data points are best fit with a 

logarithmic line (equation shown).  Area under this line 

(shaded in grey) found by integrating line from first to 

last data point. 



61 

 

decapitated and eviscerated, leaving only the vertebral column, ribcage, and surrounding 

tissues.  The preparation was then placed in a perfusion chamber filled with low-calcium, 

high-magnesium aCSF containing (in mM): 128 NaCl, 1.9 KCl, 1.2 KH2PO4, 26 

NaHCO3, 0.85 CaCl2, 6.5 MgSO4, and 10 glucose (pH of 7.4).  A dorsal laminectomy 

and ventral vertebrectomy was performed to expose the dorsal and ventral sides of the 

spinal cord from the upper cervical region to the midsacral level.  Care was taken to cut 

medial to the aorta on the left side, to preserve the connections of the dorsal and ventral 

roots to the sympathetic chain.  The aorta was then carefully removed, and the 

surrounding fascia dissected away from the left sympathetic chain. The splanchnic nerve 

was identified branching laterally from the sympathetic chain at T13 and innervating the 

celiac ganglia, and cut midway between the sympathetic chain and the celiac ganglia. The 

perfusion solution was then switched to aCSF (composition specified above), and to limit 

movement of the preparation, 25 M pancuronium bromide (Sigma-Aldrich) was added.  

3.3.2.2 Recording Configuration 

To both record slow potentials in spinal roots and stimulate the splanchnic nerve, bipolar 

glass suction electrodes (inner diameter 60-100 m) with Teflon insulated and chlorided 

silver ground wires wrapped around the outside were used.   This stimulating 

configuration both reduced ground fluctuations in the DC recordings and eliminated 

current spread from stimulation to the nearby intercostal muscles.  Visceral afferents 

were activated by stimulating the splanchnic nerve or other cut regions of the sympathetic 

chain, at an intensity of 100A or lower stimulus duration 100s or less and at a rate of 

.0167 Hz (once every 60s).   
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Ventral root potentials (VRPs) were recorded from the ventral root, and interpreted as 

compound excitatory postsynaptic potentials (EPSPs) of the combined axons of somatic 

and sympathetic efferents.  The recording configuration can be seen in figure 3.3.   

Neural activity was collected on a custom built 4 channel direct current amplifier, low 

pass filtered at 3 kHz, and digitized at 5 kHz (Digidata 1440) and recorded in Clampex 

for off-line analysis (Molecular Devices).   
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Figure 3.2. Ventral Root Potential Recording Configuration.  

A. Schematic of dissection, with ventral root connections to the sympathetic chain 

maintained.  B. Schematic of recording configuration.  Stimulate visceral afferents in the 

greater splanchnic nerve, record both ongoing DC shifts and evoked responses in the 

ventral root.  C. Sample trace of evoked ventral root response, mean of 5 sweeps.  Upper 

trace shows filtering and automated analysis, onset and offsets marked by < and > 

respectively, peak marked with ‘.’. 
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3.3.2.3 Drug Application and Quantification of Drug Effects 

Stock solutions of drugs (10-100 mM) were made and stored at -20 ºC until needed. All 

drugs were dissolved in regular ACSF and perfused through the gravity perfusion line.  

Increasing dosages of 5HT, NE, or DA were applied cumulatively, with 10 minutes in 

between each dose increment. 

Changes in ventral root potentials were assessed for both the evoked responses and 

changes in DC resting potential.  A custom built MATLAB program was used to subtract 

the baseline values prior to the stimulus, low-pass filter the response at 100Hz, find the 

onset of the compound EPSP,  peak of the response, and the integral under the filtered 

ventral root response from onset to offset (defined as when the evoked potential decayed 

to 1/3 peak amplitude).  This program and cutoff frequency was found to accurately 

capture the slow compound EPSP (see Figure 3.2C). Responses were averaged for the 

last 5 minutes of each drug dose increment for dose response curves.  Changes in ventral 

root resting potentials were calculated using the mean baseline values for the last 5 

minutes of each drug dose increment.  In order to minimize effects of differences in 

suction, both evoked and resting ventral root potentials were normalized to baseline 

evoked values. 

3.3.3 Immunohistochemistry 

For immunohistochemistry, p7-p9 HB9-eGFP
+
 mice were anesthetized with urethane 

(4mg/kg ip) and perfused with 1:3 volume/body weight heparin solution (0.9%NaCl, 

0.1% NaNO2, 1 unit/ml heparin) followed by equal volume/body weight of Lana’s 

fixative (4% paraformaldehyde, 0.2% picric acid, 0.16 MPO3, pH 6.9).  Spinal cords 
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were isolated and post fixed for 2 hours, then cyroprotected in 10% sucrose plus 0.1 M 

PO3 (pH 7.4) and stored at 4º C.   Spinal cord segments T10-L2 were frozen at -80º C and 

sectioned in 10m thick slices on a cryostat (Leitz 1720). Both transverse as well as 

horizontal sections were completed to assure assessment of rostrocaudal and medio-

lateral oriented dendrites. Slides were washed overnight in 0.1M PO3 buffered saline plus 

0.3% triton x-100 (PBS-T).  Slides were then incubated with primary antibodies seen in 

Table 1 for 48 hours at 4º C, then washed three times in PBS-t for 30 minutes each at 

room temperature.  All primary antibodies were stained with the appropriate donkey 

biotinylated secondary antibody (diluted 1:250, Jackson Immunoresearch) for 1.5 hours 

at room temperature, then washed three times for 20 minutes in PBS-t.  This was 

followed by incubation in extravidin cy3 (diluted 1:1000, Sigma) for 1.5 hours, washed 

once for 20 minutes in PBS-t, followed by 2 washes for 20 minutes each in 50mM Tris-

HCl.  Slices were then coverslipped with Vectashield (Vector Labs) for subsequent image 

capture and analysis. 

Low magnification images were obtained with Nikon E800 Microscope and rendered in 

the Neurolucida Virtual Scan Software for composite images.  High magnification 

pictures were obtained using the Imaging Fluoview 1000 confocal microscope. 
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3.4 RESULTS 

SPNs in the IML were targeted for whole-cell patch clamp recordings (see Figure 2.1). 

3.4.1 Effects of the Monoamines on SPN Membrane Properties 

3.4.1.1 Serotonin 

With the membrane potential initially held at -70 mV by injecting a constant bias current, 

bath application of 10 M 5HT depolarized all SPNs tested (mean 4.9 ± 2.1 mV, n=6).  

This depolarization was always accompanied by an increase in input resistance.  When 

compared to baseline values, in the presence of 5HT, the frequency-current (f-I) plots 

were shifted up to the left, i.e. SPNs fired action potentials at a lower current injections 

and at higher rates.  5HT increases the cell’s response to current injection by a mean 15.9 

± 9.2 % (Figure 3.3).  

Table 3.1. Immunohistochemistry receptors and concentrations. 

Receptor Species Concentration Manufacturer 

5HT1D goat 1/100 SantaCruz Biotechnology, Inc 

5HT2A rabbit 1/250 Immunostar, Inc 

5HT2C mouse 1/100 Affinity Bioreagants, Inc 

5HT7 rabbit 1/100 GenWay 

D1A rabbit 1/100 SantaCruz Biotechnology, Inc 

D2L rabbit 1/250 Millipore 

D3 rabbit 1/250 Millipore 

D5 goat 1/250 Millipore 

1D  goat    1/100 Santa Cruz Biotechnology, Inc 

2A  goat    1/250 Santa Cruz Biotechnology, Inc. 
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After a hyperpolarizing current step, upon returning to baseline holding values some cells 

exhibited rebound spiking (Figure 3.3D).  While only seen in a minority of cells (n=2/8), 

this demonstrated 5HT’s ability to unmask rebound excitation. 

3.4.1.2 Norepinephrine 

Bath application of NE had more diverse actions on SPN excitability.  NE primarily 

depolarized the membrane (mean 4.7 ± 2.2mV) and increased Rin (n=4).  However, 

hyperpolarizations (mean 3.1 ± 0.1 mV) with a decreased Rin were also seen (n=2).  

Figure 3.3. Serotonin (5HT) increases cellular excitability.   

A. Sample of voltage traces recorded when 5HT (10 μM, 1min) was added to the bath.  5HT depolarized 

the cell membrane (mean 4.9 ± 2.1 mV) and increased input resistance (not shown) in all cells tested (n=6). 

B. Sample of voltage traces in response to series of current steps (5pA steps,1s duration) (a) in control and 

(b) during peak of 5HT application. Ca. A sample frequency-current (fI) plot calculated from mean firing 

frequency at each current injection.  b. The area under the fI plot for each cell was calculated and a paired t-

test performed on control and 5HT values (p=0.04, n=6).  Plot shows normalized integral changes with 

standard deviations.  D. On occasion, application of 5HT elicited rebound excitation to hyperpolarizing 

current steps. 
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Regardless of the effects on the membrane, NA shifted the cell's f-I plot up in all neurons 

tested, by a mean 22 ± 20%  (p=0.008, n=6).  This can be seen in Figure 3.4. 

Figure 3.4 NE increases cellular excitability in a complex manner.   

A. Sample of voltage traces recorded when NE (10μM, 1 min) was applied to the bath.  Aa. NE primarily 

depolarized the membrane (mean 4.7 ± 2.2mV) and increased Rin (n=4).  Ab. Hyperpolarizations (mean 

3.1 ± 0.1 mV) with a decreased Rin were also seen (n=2).  B.  Voltage traces in response to series of current 

steps (5pA steps, 1s duration) in (a) control and (b) during peak of NE application.  C. Regardless of the 

effects on the membrane, NE increased the cell's fI plot in all neurons tested (n=6).   a. A sample frequency 

plot (fI) calculated from mean firing frequency at each current injection.  b. The area under the fI plot for 

each cell was calculated and a paired t-test performed on control and NA values for all neurons tested 

(p=0.008, n=6).  Average normalized values and standard deviation is shown. 
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3.4.1.3 Dopamine 

DA bath application lead to both depolarizations (mean 6.0 ± 3.5 mV, n=7) and 

hyperpolarizations (mean 5.2 ± 0.9 mV, n=2) in SPNs, with unclear actions on input 

resistance.  In contrast to 5HT and NE, while DA increased the cell’s firing frequency in 

response to current injection in the majority of neurons (mean 11.5 ± 9.2%; p=0.004, 

n=8), decreased responses were also seen (mean -27.2 ± 3.4%; p= 0.05,n=3), as shown in 

Figure 3.5.  Changes in excitability were not correlated to either changes in membrane 

potential or input resistance. 

3.4.2 Monoamine-induced Net Changes in Excitability of Population Spinal 

Efferents 

The monoamines have generally excitatory actions on motoneurons, similar to those 

reported above in SPNs 
[15, 97, 111]

 .  In both the rodent and human thoracic spinal cord, 

their axon number in ventral roots likely exceeds those of somatic motoneurons 
[18, 50, 154]

.  

Therefore in order to examine net modulatory actions on thoracic spinal efferents (where 

SPNs dominate), both ongoing changes in ventral root DC polarity and evoked VRP 

responses to visceral afferent stimulation were assessed with DC recordings. 

3.4.2.1 Serotonin 

Application of 5HT lead to a dose-dependent depression of the visceral afferent- evoked 

VRP.  Figure 3.6A shows a sample for an individual day dose-response trial. When the 

evoked response was normalized to the initial VRP and compared across trials, a mean 

IC50 value of 0.98 M was calculated (Figure 3.6B).  In contrast, 5HT produced a dose-
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dependent depolarization of the ventral root resting polarity (n=4/4; e.g Figure 3.6C) 

with a mean EC50 value of 0.54 M (Figure 3.6D). 

3.4.2.2 Norepinephrine 

Similar to 5HT, application of NE led to a dose-dependent depression of the visceral 

afferent-evoked VRP. Figure 3.7A shows a sample for an individual dose-response trial, 

and 3.7B shows the evoked VRP compared across trials (IC50=0.49 M).   NE produced 

either a slight depolarization (n=2/3) or a slight hyperpolarization (n=1/3) on the ventral 

root resting potential (Figure 3.7C).  Variability in response precluded an estimation of 

EC50 values.   

Interestingly, 5HT and NE greatly depressed ongoing spontaneous VRPs while 

concomitantly increasing ongoing activity in the ventral roots (n=4/4 and 3/3, 

respectively) (Figure 3.8).  This increase in activity was often rhythmic.  Coupled with 

the observed depressant actions on visceral-afferent evoked VRPs and increased 

responses to current injection in individual SPNs described earlier, these observations 

support the notion that 5HT and NE have excitatory actions on motor neurons (both 

somatic and autonomic), while depressing visceral afferent input.   
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Figure 3.5 DA had mixed actions on SPN membrane properties.  

 A.  Sample of voltage traces recorded when DA (10 μM, 60-90s) was applied to the bath.  DA both (a) 

depolarized (mean 6.0 ± 3.5 mV, n=7) and (b) hyperpolarized (mean 5.2 ± 0.9 mV, n=2) the membrane, with 

unclear actions on input resistance.  While DA  (B) increased cellular excitability in the majority of neurons, 

(C) decreased excitability (n=3) was also seen.  Voltage traces in response to series of current steps (5-15pA 

steps, 1s duration).   Da. Sample frequency plot of increased excitability, based on the mean firing frequency 

at each current injection.  b. The area under the fI plot was calculated and a paired t-test performed for all 

neurons showing increased excitability (p=0.004, n=8).  Shown is the mean normalized values and standard 

deviation. E. Sample fI plot and mean normalized area under all fI plots showing decreased excitability (p= 

0.05,n=3).  Changes in excitability were not correlated to either changes in membrane potential or input 

resistance. 
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Figure 3.6. 5HT actions on evoked and resting ventral root properties.   

A. Sample of ventral root potentials (VRPs) evoked by splanchnic nerve stimulation.  Each trace is the 

mean, normalized trace of 5 sweeps for each dose increment.    B. Dose response trials for 5HT, with each 

trial a separate color.  Line is a best fit dose-response equation to all data points, IC50 value is the dose at 

which the evoked response is half the control value. C. Sample change in resting polarity during dose 

response.  Each point is the mean value of the traces pre-stimulus, by convention negativity is upward.  D. 

Normalized plots of resting ventral root polarity, average of 5 sweeps for each dose.   
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Figure 3.7  NE actions on evoked and resting ventral root properties.   

A. Sample of ventral root potentials (VRPs) evoked by splanchnic nerve stimulation.  Each trace is the 

mean, normalized trace of 5 sweeps for each dose increment.  Dot denotes peak values.  B. Dose response 

trials for 5HT, with each trial a separate color.  Line is a best fit dose-response equation to all data points, 

IC50 value is the dose at which the evoked response is half the control value. C. Sample change in resting 

polarity during dose response.  Each point is the mean value of the traces pre-stimulus, by convention 

negativity is upward.  D. Normalized plots of resting ventral root polarity, average of 5 sweeps for each 

dose.  Again, line is a best fit dose-response to maximal ventral root polarization for all trials.   
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3.4.2.3 Dopamine  

Application of DA, like that of 5HT and NE, depressed visceral afferent evoked VRPs in 

a dose-dependent manner.  Much higher concentrations of DA were needed to fully 

suppress the evoked response, with low concentrations having little effect.  Of all the 

monoamines tested, DA was the least potent by about 10-fold with an IC50 value of 4.64 

M.  Figure 3.9A shows a sample for an individual dose-response trial, while Figure 

3.9B shows the evoked VRP compared across trials.  Unlike the actions on evoked VRP 

responses, DC shifts in the ventral root were produced by DA at the lowest 

concentrations (less than 1M)  and always depolarized the ventral root (n=3/3; Figure 

3.9C).  Yet as the concentration increased past ~5M, the ventral root potentials became 

hyperpolarizing in 2 of 3 cases (Figure 3.9D).   To test whether this was a history- or 

dose- dependent shift, single doses of 10M DA were applied for 10 minutes and then 

washed out (Figure 3.9E).  At this concentration, DA hyperpolarized the resting VR 

membrane potential in 3/3 trials, supporting membrane hyperpolarizations at higher DA 

doses. 
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Figure 3.8 Changes in ongoing ventral root activity. 

Figure shows changes in ongoing activity in control, drug, and washout.  A. 3 out of 10 epochs covering 5 

minutes for control, 5 minutes after 5HT (5 M) was applied, and 15 minutes after washout. Note 

spontaneous bursting in the presence of 5HT.   Arrows denote spontaneous ventral root potentials, some of 

which reach spike threshold. B. 3 out of 10 epochs covering 5 minutes, for control, 5 minutes after NE (5 

M) was applied, and 15 minutes after washout.  Note both 5HT and NE increased background spiking 

and the emergence of bursting events, while eliminating spontaneous potentials.  DA had limited effects 

on spontaneous activity and is not displayed. 



76 

 

.   

Figure 3.9 Figure 3.10 DA actions on evoked and resting ventral root properties.  

A. Sample of ventral root potentials (VRPs) evoked by splanchnic nerve stimulation.  Each trace is the 

mean, normalized trace of 5 sweeps for each dose increment..  B. Dose response trials for DA, with each 

trial a separate color.  Line is a best fit dose-response equation to all data points, IC50 value is the dose at 

which the evoked response is half the control value.  C. Sample change in resting polarity during dose 

response.  Each point is the mean value of the traces pre-stimulus, by convention negativity is upward.  D. 

Normalized plots of resting ventral root polarity, average of 5 sweeps for each dose.  Note the bidirectional 

plot in 2/3 trials.  E. Sample change in resting polarity during single dose (10 M) DA application.   
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3.4.3 Distribution of Monoamine Receptors 

3.4.3.1 Serotonin Receptors  

As both 5HT7 and 5HT2 receptors are known to have excitatory actions on motoneurons 

[104, 189, 223]
 and implicated in 5HT actions on SPNs 

[145, 155, 159]
, we undertook 

immunolabeling studies to determine substrates of direct actions.  Dual immunolabeling 

for both anti-GFP and various serotonergic receptors was assessed in the IML and 

intercalated nucleus (ICN).  Immunohistochemistry revealed the presence of 5HT2A and  

5HT7 receptors on HB9+ neurons in these regions.  Figure 3.10 displays a comparison 

with HB9-GFP labeling with 5HT2A receptor labeling, showing co-labeling both 

perisomatically and on processes.  Staining in horizontal slices revealed HB9+ processes 

in the dorsal-ventral direction at the level of the IML, consistent with the projections of 

SPN axons.  Figure 3.11 displays a comparison between HB9-GFP labeling and 5H7 

receptor labeling, and shows both perisomatic and process labeling in the IML.  5HT2c, 1d, 

1f, and 5 receptors were also assessed, but the antibodies tested did not positively label any 

SPNs and are not shown. 
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Figure 3.11 5HT2A receptors.   

A. Horizontal spinal cord slice 10 m thick, just dorsal to the central canal (at level for IML visualization);  

imaged with Nikon E800 Microscope and rendered in Neurolucida Virtual Scan software for composite 

shown.  Dotted lines denote approximate location of central canal. Left column, GFP labeling; middle, 

5HT2A receptors; right, merged image. Note some co-labeled somas (arrows) and processes, including those 

in the dorsal-ventral plane (boxed region). B. Low magnification confocal image of a transverse spinal cord 

slice, 10 m thick.  Note widespread labeling, particularly in the ventral horn and some in the IML. C. 

Higher magnification confocal image of IML from a horizontal slice.  Image represents composite of 10 

consecutive images taken at 0.3 m optical section thickness (3 m total thickness).  Note some punctate 

labeling on and nearby SPN somas, as well as GFP+ process co-labeling.  D. Higher magnification of 

boxed region in A.  Confocal image of horizontal slice, single image of 0.3 m thickness. Note co-labeling 

of processes going into the page, in the dorsal-ventral plane. 
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Figure 3.12 5HT7 receptors.   

A. Horizontal spinal cord slice 10 m thick, just dorsal to the central canal (at level for IML visualization);  

imaged with Nikon E800 Microscope and rendered in Neurolucida Virtual Scan software for composite 

shown.  Dotted lines denote approximate location of central canal. Left column, GFP labeling; middle, 

5HT7 receptors; right, merged image. Note some co-labeled somas (arrows). B. Higher magnification 

confocal image of IML from a horizontal slice.  Image represents single optical slice of 0.3 m thickness.  

Note some punctate labeling perisomatically around SPNs as well as GFP+ processes between them. 
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3.4.3.2 Adrenergic Receptors 

Dual immunolabeling for both anti-GFP and various adrenergic receptors was assessed in 

the IML and intercalated nucleus (ICN).  Immunohistochemistry revealed the presence of 

both 1D and 2A receptors on HB9+ neurons in these regions.  Figure 3.12 displays a 

comparison with HB9-GFP labeling with 1D receptor labeling, showing perisomatic co-

labeling.  Note weak labeling of 1D in the IML compared to ventral horn and ICN.  

Figure 3.13 displays a comparison between HB9-GFP labeling and 2A receptor labeling.  

2A receptors strongly labeled the spinal white matter, suggesting a non-neural labeling 

and/or labeling of neural processes traveling within the white matter.  In the grey matter, 

GFP
+
 neurons in the IML were clearly co-labeled. 1 receptors were also assessed, but the 

antibodies tested did not positively label any SPNs and are not shown. 

3.4.3.3 Dopaminergic Receptors  

Using immunohistochemistry, D1, D2, D3, D4, and D5 receptors were tested.  Of those 

tested, only D2, D3, and D5 receptors co-labeled HB9
+
 neurons in the IML and ICN 

(Figures 3.14-3.16).  While D2,3, and 5 receptors were found on many non-GFP+ neurons 

as well. D1 and D4 receptors did not positively label any SPNs and are not shown. 
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Figure 3.13 Adrenergic receptor 1D.  

A. Low power confocal image of lower thoracic spinal cord transverse slice, showing both Hb9 -GFP+ 

neurons and 1D adrenergic receptor labeling. Notice sporadic labeling throughout the spinal cord, 

particularly in ventral horn.  B. Higher magnification of IML in an adjacent slice.  Image represents 

composite of 6 consecutive confocal images taken at 0.3 m optical section thickness (1.8 m total 

thickness).  Note weak labeling of SPNs in the IML (boxed), but much stronger labeling of GFP+ neurons 

in other autonomic regions. C. Single section (0.3 m optical thickness) deeper into the slice, showing 

weak labeling of IML neurons (arrows).   
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Figure 3.14 Adrenergic receptor 2A. 

A. Low power confocal image of lower thoracic spinal cord transverse slice, showing both Hb9 -GFP+ 

neurons and 2A adrenergic receptor labeling. Notice relatively weak labeling of spinal grey matter, 

compared to strong white matter labeling.  B. Higher magnification of IML in same  slice.  Image 

represents single optical slice of 0.3 m thick. Note perisomatic labeling of SPNs (arrows)  C. Composite 

of 7 consecutive confocal images from an adjacent slice, taken at 0.3 m optical section thickness (2.1 m 

total thickness).  Again, note perisomatic labeling of SPNs. 
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Figure 3.15 D2 dopaminergic receptors.  

 A. Horizontal spinal cord slice 10 m thick, just dorsal to the central canal; imaged with Nikon E800 

Microscope and rendered in Neurolucida Virtual Scan software.  Dotted lines denote approximate location 

of central canal. Left column, GFP labeling; middle, D2 receptors; right, merged image. Note some co-

labeled somas (arrows). B. Low magnification confocal image of a transverse spinal cord slice in a 

different animal, 10 m thick.  Note widespread labeling, particularly in the ventral horn and in the IML. 

C. Higher magnification confocal image of IML from a transverse slice.  Image represents composite of 19 

consecutive images taken at 0.3 m optical section thickness (5.7 m total thickness).  Note punctate 

labeling throughout the IML and surrounding region, includes some SPN somas and processes.  D. Single 

image of 0.3 m thickness, same slice as in C.  Note co-expression of D2Rs and GFP. 
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Figure 3.16 D3 dopaminergic receptors.   

A. Horizontal spinal cord slice 10 m thick, just dorsal to the central canal; confocal image at low 

magnification. Left column, GFP labeling; middle, D3 receptors; right, merged image. Note some co-

labeled somas (arrows). B. Low magnification confocal image of a transverse spinal cord slice in a 

different animal, 10 m thick.   C. Higher magnification confocal image of IML from a transverse slice. 

Single image, 0.3 m optical section thickness  Note perisomatic labeling on SPNs. 
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Figure 3.17 D5 dopaminergic receptors.   

A. Transverse spinal cord slice 10 m thick, confocal image at low magnification. Left column, GFP 

labeling; middle, D5 receptors; right, merged image. Note co-labeling in IML (boxed). B. Higher 

magnification confocal image of boxed region. Image represents composite of 20 consecutive images taken 

at 0.3 m optical section thickness (6 m total thickness).  C. Single image of same region,  0.3 m optical 

section thickness  Note cytoplasmic labeling of SPNs. 
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3.5 DISCUSSION 

While monoaminergic effects on SPNs have been partially explored in other species, I 

sought to compare the effects in the neonatal mouse to reported effects in the adult cat 

and neonatal rat.  Additionally, I investigated what actions these descending systems 

usually have on overall SPN excitability, both by patch-clamp recordings of visually 

identified SPNs and population responses of SPNs and motoneurons in the ventral root.  

Lastly, I assessed how the monoamines modulate afferent evoked reflexes, given the 

conflicting reports.   

3.5.1 Serotonin 

5HT-induced membrane depolarizations and increases in input resistance are consistent 

with those reported in the neonatal rat in vitro 
[145, 155, 220]

.   5HT also increased SPN 

responsiveness to current injections, which mimics incoming synaptic input.  5HT-

induced depolarizations in the resting ventral root polarity and increased background 

activity in the ventral root reflect an overall excitatory action of 5HT on SPNs (see below 

for more detail). These overall increases in cellular excitability are also supported by 

reported increases in extracellular firing after iontophoretically applied 5HT in cats 
[89]

.  

Interestingly, 5HT was also able to unmask rebound excitation in a proportion of SPNs, a 

trait crucial to the half-center oscillator models of central pattern generators 
[125]

.  In fact, 

intrathecal administration of 5HT has been shown to restore sympathetic rhythms in the 

rat tail after acute spinal cord transection 
[163]

. 

The consistently positively coupled changes in SPN excitability are supported by our 

immunohistochemical results.  Activation of both Gq and Gs coupled receptors increases 
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protein phosphorylation, including that of ion channels, increasing the general excitability 

of the neurons.  Our immunohistochemistry identified 2 such serotonergic receptors on 

SPNs: 5HT2a (Gq) and 5HT7 (Gs) receptors.   Immunohistochemistry and electron 

microscopy in the rat previously showed the presence of 5HT2A receptors in the IML, 

with mainly postsynaptic labeling on dendrites and somas, as well as some presynaptic 

labeling of axons in the ventral horn 
[240]

.  This axonal labeling is consistent with labeling 

of HB9 GFP
+
 processes we found projecting dorso-ventrally from the IML.  Additionally, 

the presence of 5HT7 receptors on SPNs is consistent with mild labeling reported in the 

cat and rat 
[189, 241]

.  The lack of Gi coupled 5HT receptors further reinforces the direct 

electrophysiologically shown enhanced excitability of SPNs. 

3.5.2 Norepinephrine 

In contrast to 5HT, NE elicited both depolarizations and hyperpolarizations of SPNs.  

These mixed membrane responses and accompanying changes in input resistance are 

consistent with activation of both 1 and 2 adrenergic receptors in the neonatal rat and 

adult cat 
[109, 179, 277, 278]

.  However, while previous electrophysiological evidence implied 

the presence of both Gi and Gs coupled adrenergic receptors, the relative density and 

location of the two receptor subtypes and the amount of NE released likely determines 

what functional consequences NE may have. The slight depolarizations and 

hyperpolarizations in the ventral root after NE application also imply mixed actions on 

the population of SPNs, and are consistent with this hypothesis. Populations of SPNs 

with differential recruitment and/or end targets may contribute to these mixed responses.  

In all my experiments, however, 10 M NE increased SPN excitability and led to large 

increases in activity in the ventral root, suggesting a dominance of 1 receptor activation.   
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Our immunohistochemical studies support these actions, showing the presence of both 

1a and 2a receptors on SPN somas and processes.  This is consistent with previous 

immunohistochemical and autoradiographic studies showing the existence of 1a and 2a 

receptors near the IML and in lamina X in the rat spinal cord 
[57, 230, 243]

.  The presence of 

both receptors, however, suggests the preferential activation of one based on dosage used, 

an hypothesis to be explored at a later date. 

3.5.3 Dopamine 

The actions of dopamine on SPNs seem to be the most complex of the monoamines 

studied.  In the patch studies of SPNs, both depolarizations and hyperpolarizations were 

observed after applications of 10M, but these were not consistently linked with changes 

in input resistance, suggesting indirect actions as well as direct actions of DA.  When net 

potential changes were assessed in the ventral roots, polarity shifts were dose dependent, 

with low doses producing a depolarization and higher doses producing a 

hyperpolarization.   These dose-dependent effects on efferent polarity are consistent with 

those reported in the pre-frontal cortex, where low doses of DA preferentially activated 

D1-like receptor pathways and higher doses of DA masked these effects by activation of 

D2-like effects 
[254, 280]

.   These results imply the presence and preferential activation of 

both D1-like (Gs-coupled) and D2-like (Gi-coupled) receptors on SPNs. Again, given the 

electrophysiological differences described in Chapter 2, these may reflect differential 

effects based on SPN subpopulation.  

Our immunohistochemistry indicated the presence of both Gi-coupled (D2 and D3) and 

Gs-coupled (D5) receptors on SPNs, both somas and processes. D2 and D3 labeling much 
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more specifically targeted SPNs and motoneurons, while D5 labeling was diffuse 

throughout the spinal cord.  The exact implications of this are yet unclear, but indicate a 

complex modulatory ability of dopamine based on dose- and location- dependent 

preferential binding of receptors. 

3.5.4 Ventral Root Recordings and Visceral Afferent Mediated Reflexes 

While the thoracic ventral roots T11-T12 are predominantly SPN axons, there is a sizeable 

minority of somatic motoneurons as well 
[18, 50, 154]

.  Hence, in the absence of selective 

recordings from muscles (whose activity was blocked with pancuronium), I cannot 

exclude the possibility that evoked actions from visceral afferents or MA-induced 

changes in resting ventral root activity reflect changes exclusively in somatic or 

sympathetic efferents.  In fact, stimulation of splanchnic afferents has been shown to 

evoke both autonomic and somatic motor spinal reflexes 
[4, 52, 64, 81, 136]

.  Yet even with 

mixed sympathetic and somatic motor output recorded in the ventral roots, the 

monoamines have been shown to have similar effects on both somato-sympathetic and 

somatic-somatic reflexes, with descending monoaminergic centers generally depressing 

the evoked reflexes (e.g. 
[47, 88, 156, 264]

).  Here we extend these findings to visceral afferent 

mediated spinal reflexes.   

While the monoamines predominantly increased excitability of SPNs and motoneurons, 

visceral afferent mediated reflexes were depressed by 5HT, DA, and NA, in a dose-

dependent fashion.  Given the generally increased excitability of spinal efferents but 

decreased reflex response, the monoamines are likely acting on a site earlier in the reflex 

pathway than the motoneurons and SPNs.  Moreover, this dichotomy of action 
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functionally implies that in the presence of the monoamines, there is a dose-dependent 

decoupling of output from visceral input, shifting the system to a central-drive only 

model.   

Moreover, both 5HT and NE depressed spontaneous VRPs while concomitantly 

increasing background ventral root activity in a rhythmic manner.  This likely reflects a 

decrease in synaptic transmission from intrinsic spinal circuits, yet an increase in the 

overall excitability and rhythmogenic capability of efferent neurons. However, an 

increase in the background activity may have secondary consequences on how easily the 

efferents are recruited.  Inasmuch as the ventral root recordings reflect sympathetic 

output, decreased recruitment for both spontaneous and visceral afferent-evoked VRPs 

may be at least partially due to activity-dependent depression of recruitment.  In SPNs, 

this decreased excitability after high intensity activity has been termed the “sympathetic 

silent period”, and had been well documented by a number of investigators 
[171, 200, 224]

. 

Indirect mechanisms of monoaminergic depression may therefore also contribute to the 

observed effects. 

In conclusion, the present study shows that the monoamines can modulate sympathetic 

excitability in a complex fashion.  By creating a novel metric for measuring changes in 

SPN excitability, this study also showed the flaws in assuming actions on resting 

membrane potential are always linked to changes in cellular excitability.  5HT 

consistently acts to increase SPN excitability, and potentially modifies the cellular 

properties to allow for rhythmogenesis.  The actions of DA and NA are more complex, 

consistent with the dual presence of Gi and Gs coupled receptors for these modulators.  

The actions of all three monoamines depress visceral afferent mediated reflexes, 
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suggesting differential amplification of autonomic inflow and outflow from the spinal 

cord.  This dichotomy will be further explored in Chapter 4. 
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  CHAPTER 4

MODULATION OF VISCERAL AFFERENT MEDIATED 

REFLEXES AND PRESYNAPTIC INHIBITION 

4.1 ABSTRACT 

Stimulation of splanchnic afferents has been shown to evoke both autonomic and somatic 

spinal reflexes, and in the previous chapter I showed that the monoamines inhibit 

visceral-afferent evoked reflexes but directly excite SPNs.  To date, no one has 

systematically investigated the site(s) of action of monoaminergic depression of visceral 

afferent mediated reflexes. 

One of the most effective means of inhibiting afferent inflow is via presynaptic inhibition 

(PSI), yet there are conflicting reports whether visceral afferents exhibit PSI.  The current 

study represents the first characterization of primary afferent depolarization-based PSI in 

mouse by visceral (splanchnic) afferents, and the first characterization in any species of 

the modulation of visceral primary afferent neurotransmission by the descending 

monoaminergic transmitters dopamine (DA), noradrenaline (NE), and serotonin (5-HT). 

The major splanchnic nerve is a mixed nerve, comprised of SPNs, postganglionics, and 

CGRP
+
 visceral afferents.  Stimulation of this nerve leads to both dorsal and ventral root 

volleys, identified as afferent antidromic and SPN orthodromic compound action 

potentials, respectively.  Subsequent Ca
2+

 -sensitive (synaptic transmission-dependent) 

dorsal root potentials (DRPs) and ventral root potentials (VRPs) were evoked, with the 

DRPs slower in onset than the VRPs. Simultaneous extracellular field potential (EFP) 
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recordings identified intraspinal sites of visceral afferent transmission, with prominent 

actions in the deep dorsal horn.   

5HT reversibly and dose-dependently depolarized the resting dorsal root DC recordings 

and depressed the evoked DRP.  Coupled with depression of the shortest latency EFP, 

5HT depression of visceral afferent transmission and PSI are supported.   

NE dose-dependently depressed the visceral afferent-evoked DRP at slightly higher 

efficacy than 5HT, but its actions were only partially reversible.  Like 5HT, NE 

depressed the evoked EFP, suggesting actions on multiple sites of PSI circuitry.  

DA also dose-dependently depressed the visceral afferent evoked DRP, but with much 

lower efficacy than 5HT or NE.  This, and observed mixed actions on the dorsal root DC 

recordings and EFP suggest a more distinct control of the PSI circuitry by DA. 

The monoamines also depressed the VRP. As this occurred with differing time- and dose-

dependence, reflex depression at multiple sites for all transmitters are suggested.  Overall, 

I conclude that the monoamines act to both depress afferent transmission (↓EFP) and 

facilitate selective afferent transmission (↓ DRP), resulting in a complex modulatory 

regulation of afferent input. 

4.2 INTRODUCTION 

Sensory information from viscera reaches the spinal cord largely through sympathetic 

nerves 
[13, 17, 229]

.  While visceral afferents only comprise a small percentage of DRG 

neurons in the thoracolumbar spinal regions 
[38, 134, 188]

, they project more diffusely than 

their somatic counterparts, often travelling multiple segments in the rostrocaudal 
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direction (
[37, 65, 246]

; see also Figure 4.1).   Visceral afferents also have distinct spinal 

projection patterns from many of their somatic counterparts.  Most spinal visceral 

afferents terminate in lamina I or in the deep dorsal horn (laminae IV-V), with a few 

collaterals reaching near lamina X 
[37, 188, 247]

.  Electrical stimulation of the greater 

splanchnic nerves has often been used to study visceral afferent inflow (e.g. 
[4, 64, 225, 251]

 ), 

as they contains afferents of the gut, pancreas, spleen, kidneys, testis/ovaries, and pelvic 

organs 
[187]

.  Stimulation of splanchnic afferents has been shown to evoke both autonomic 

and somatic motor spinal reflexes 
[3, 4, 52, 64, 81, 136]

.   

Monoaminergic systems descending from the brainstem have profound modulatory 

actions on both motor output and sensory input 
[15, 160, 193, 262]

.    However, given the 

relative scarcity of visceral to somatic afferent input, neuromodulation of visceral afferent 

input needs to be specifically addressed. Studies using visceromotor and pressor 

responses to colorectal distension in the awake rat have indicated antinociceptive actions 

of NE and 5HT 
[55, 56]

, and one study of spinal micturition reflexes has suggested 

inhibitory actions of DA 
[271]

.  Aside from our work detailed in Chapter 3, no one has 

systematically investigated the site of action and dose-dependent modulation of visceral 

afferent mediated reflexes. 

Additionally, one of the most effective means of inhibiting afferent inflow is presynaptic 

inhibition (PSI), which can be seen as a summed, back propagated depolarization of 

primary afferent terminals (primary afferent depolarization, or PAD) 
[219]

.  Traditionally 

thought to be mediated by trisynaptic circuitry with last order GABAergic interneurons 

[102, 219]
, selective patterns of PAD are found in subsets of group I and II muscle and 

cutaneous afferents (e.g. 
[27, 28, 121, 213]

).  In spinal visceral afferents, PAD has been shown 
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in response to splanchnic nerve  and sympathetic chain stimulation 
[228]

, while 

conditioning with splanchnic stimulation inhibited the intercostal-intercostal reflex in 

decerebrate and acute spinal cats 
[64]

. While descending monoaminergic systems have 

been shown to play a strong role in sensory processing in spinal interneurons 
[84, 119]

 and 

modulating PAD in somatic afferents 
[24, 75]

,  no one has studied whether these systems 

have actions on visceral afferent mediated PAD, nor whether these actions are consistent 

with those seen in somatic nerves. 

In order to address these questions, we developed an in vitro spinal cord- sympathetic 

chain preparation in the neonatal mouse.  This preparation allowed us to record both 

reflex responses and PAD to splanchnic nerve or sympathetic chain stimulation.  

Compared to in vivo models, this in vitro model allows for greater accessibility and 

pharmacological control of the environment as well as the avoidance of anesthetics, 

which can have a detrimental effect on the known mechanisms of PAD generation 
[80, 132]

.  

The current study represents the first characterization of spinal visceral afferent-induced 

PAD in an in vitro model and the first in any model of visceral-evoked PAD modulation 

by the descending monoaminergic systems dopamine (DA), norepinephrine (NE), and 

serotonin (5HT). 

4.3 MATERIALS AND METHODS 

All procedures described here comply with the principles of The Care and Use of 

Animals outlined by the American Physiological Society and was approved by the Emory 

University Institutional Animal Care and Use Committee. 
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4.3.1 Dissection 

All experiments were performed at postnatal day 5-8 litter of mice crossed from 

transgenic hemizygote HB9-eGFP females (JAX laboratories) and inbred C57/BL6 

males.  Mice were either HB9-eGFP
+/-

 heterozygotes or wild type.  Dissection followed 

the same protocols described in Chapter 3 for neonatal animals.  Briefly, animals were 

decapitated and eviscerated, and a dorsal laminectomy and ventral vertebrectomy were 

performed in low-Ca
2+

, high-Mg
2-

 ACSF to expose the dorsal and ventral sides of the 

spinal cord from the upper cervical region to the midsacral level.  The splanchnic nerve 

was identified and cut midway between the sympathetic chain and the celiac ganglia. The 

perfusion solution was then switched to regular ACSF, and to limit movement of the 

preparation, 25 M pancuronium bromide (Sigma-Aldrich) was added.  

4.3.2 Recording Configuration 

The recording configuration was also similar to that described in Chapter 3, and the 

recording configuration for most experiments can be seen in Figure 4.1.  Briefly, slow 

potentials in spinal dorsal and ventral roots were recorded with bipolar glass suction 

electrodes (Figure 4.2).  Visceral afferents were activated by stimulating the splanchnic 

nerve or sympathetic chain at a rate of .0167 Hz (once every 60s), as higher frequency 

stimuli were susceptible to depression 
[221]

.  This stimulation frequency was therefore 

used for subsequent experiments.  Slow potentials were recorded from the T11-T13 

dorsal and ventral roots with a custom built 4 channel DC amplifier.   

Ventral root potentials (VRPs) in response to afferent stimulation were interpreted as 

compound excitatory postsynaptic potentials (EPSPs) of combined somatic and 



97 

 

sympathetic efferents.  Dorsal root potentials (DRPs) are produced as a result of 

electrotonically back-propagating depolarizing potentials in primary afferent terminals. 

Primary afferent depolarization (PAD) at terminals leads to presynaptic inhibition by 

reducing transmitter release 
[219]

, so the slow DRPs were used as a measure of the 

magnitude on PAD-evoked presynaptic inhibition.  DRPs were recorded with a suction 

electrode attached en passant to the root as close to the entry zone as possible to 

minimize electrotonic decay (Figure 4.1 and 4.2).   

Electrical stimulation of the splanchnic nerve evoked short latency spiking components in 

the dorsal root recordings 

(Figure 4.2). These are 

orthodromically propagating 

population spikes in recruited 

afferent fibers and are discussed 

in more details in the Results 

section 4.4.2. 

Neural activity was collected on 

a custom built 4 channel direct 

current amplifier, low pass 

filtered at 3 kHz, and digitized at 

5 kHz (Digidata 1340, Molecular 

Devices) and recorded in 

Clampex (Molecular Devices) for 

Figure 4.1 Sympathetic chain anatomy.   

A. Schematic of the sympathetic chain and its connections to 

the spinal cord. B. Schematic of recording configuration, 

with stimulating electrode on greater splanchnic nerve and 

recording electrodes on dorsal and ventral roots.  Field 

potential electrode penetrates into dorsal horn from cut 

surface of spinal cord. 
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off-line analysis. 

4.3.3 Extracellular Field Potentials 

When extracellular field potentials (EFPs) were recorded, a 2/3 sagittal section of the 

spinal cord was completed using fine insect pins.  Micropipettes (tip diameter 1-2 m, 

resistance 4-7 MΩ) were filled with 2 M KCl and penetrated the cut surface of the spinal 

cord at an approximately 35º angle until EFPs were seen.  EFPs reflect population 

membrane voltage changes in the neurons around the tip of the electrode.  Recording 

locations were approximated after the experiment using a transverse picture of the 

sectioned spinal cord, distance from the surface of the spinal cord marked during the 

experiment, and approximate angle of micropipette penetration (see Figure 4.1B for 

schematic and Figure 4.6C for estimated recording positions). 

4.3.4 Drug Solutions and Applications 

Stock solutions of drugs (10-100 mM) were made and stored at -20 ºC until needed. All 

drugs were dissolved in regular ACSF and perfused through the gravity perfusion line.  

For time response trials, 5-10M of 5-hydroxytryptamine HCl (5HT), norepinephrine 

bitartrate (NE), or dopamine HCL (DA), all from SIGMA ALDRICH, was applied for 10 

minutes, then washed out with regular ACSF + pancuronium for at least 30 minutes.  For 

dose-response trials, increasing dosages of 5HT, NE, or DA were applied cumulatively, 

with 10 minutes in between each dose increment. 
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4.3.5 Data Analysis 

The analysis methods described in Chapter 3 were again used for VRPs, DRPs, and when 

collected, EFPs.  Changes were assessed in the spinal roots for both the evoked responses 

and changes in DC resting potential.  A custom built MATLAB program was used to 

subtract the baseline values prior to the stimulus, low-pass filter the response at 100Hz, 

find the onset of the compound EPSP,  peak of the response, and the integral under the 

filtered root response from onset to offset (defined as the time at which the slow potential 

decayed to 1/3 peak amplitude).  Responses were averaged for the last 5 minutes of each 

drug dose increment for dose response curves.  Changes in spinal root resting potentials 

were calculated using the mean baseline values for the last 5 minutes of each drug dose 

increment.  In order to minimize effects of differences in suction in the recording 

electrodes, both evoked and resting ventral root potentials were normalized to baseline 

evoked values.  Statistics were completed using a two-tailed paired t-test in Microsoft 

Excel. Timing of 1
st
 afferent spikes was assessed visually in Clampfit (Molecular 

Devices). 

4.3.6 Immunohistochemistry 

For immunohistochemistry, the splanchnic nerve and sympathetic chain connecting the 

rostral three ganglia were isolated using the dissection described above.  Sympathetic 

chains were fixed in 4% paraformaldehyde for 1 hour, then cyroprotected in 10% sucrose 

plus 0.1 M PO3 (pH 7.4) and stored at 4º C.   Before staining, chains were washed 

overnight in 0.1M PO3 buffered saline (PBS), then incubated with primary antibodies 

CGRP (goat, AbD Serotec, 1:200), TH (rabbit, Millipore, 1:1000), and anti-GFP 

(chicken, AbCam, 1:1000)  for 48 hours at 4º C, then washed three times in PBS-t for 30 
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minutes each at room temperature.  Primary antibodies were stained with Alexa488 anti- 

chicken (diluted 1:100), cy3 anti-goat (diluted 1:250), and cy5 anti-rabbit (diluted 1:100) 

secondary antibodies, all from Jackson Immunoresearch. 

 

Figure 4.2 Example of events observed following splanchnic nerve stimulation.  

 Sample recorded dorsal root potential (DRP) recorded at dorsal root entry zone (A) and ventral root 

potential (VRP) recorded at ventral near exit from cord (B), both of which disappear with 0 Ca2+ aCSF 

(bottom traces). In A, DRP, with higher magnification of grey boxed orthodromic afferent spiking is 

shown at right.  In B, VRP, with higher magnification of grey boxed antidromic spiking of SPNs is shown 

at right. 
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4.4 RESULTS 

4.4.1 Composition of the Major Splanchnic Nerve and Sympathetic Chain 

While many studies have shown that visceral afferents project to DRGs several segments 

away from their spinal nerves 
[37, 65, 246]

, few have suggested they reach the appropriate 

DRGs by traveling within the sympathetic chain 
[5, 13]

.  I therefore sought to confirm the 

presence of afferents in the sympathetic chain and major splanchnic nerve in the neonatal 

mouse model system.  I used fixed tissue of dissected whole mounts of the major 

splanchnic nerve and sympathetic chain and immunohistochemistry coupled with 

cumulative stacks of confocal sections.   

As calcitonin gene-related peptide (CGRP) is a peptide found in about 40-50% of dorsal 

root ganglia neurons, with a particularly strong preference for labeling visceral afferents 

[127, 149, 182]
, I identified CGRP

+
 axons as afferents.    I compared the pattern of CGRP

+
 

staining to tyrosine hydroxylase (TH), a marker for sympathetic postganglionic neurons 

[113]
.  TH is the first and rate-limiting enzyme involved in catecholamine synthesis 

[185]
.  

Triple labeling for CGRP, TH, and HB9-GFP therefore assessed in the isolated 

sympathetic chain and greater splanchnic nerve the relative abundance of visceral 

afferent, postganglionic, and preganglionic axons, respectively.  
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Figure 4.3 Axon fiber composition in paravertebral ganglia. 

A.  Lower power image of two sympathetic ganglia and connecting nerve bridge, showing nerve contains a 

mixture of at least 3 neurochemically distinct fiber populations: sympathetic preganglionics (SPNs), 

CGRP
+
 visceral afferents, and TH

+
 sympathetic postganglionics. B. SPNs (GFP

+
), CGRP and TH 

immunolabeled axons in axon bundle between two sympathetic ganglia. Image represents composite of 73 

consecutive confocal images taken at 0.38 m optical section thickness (27.74 m total thickness). C. 

SPNs (GFP
+
), CGRP and TH immunolabeling in a sympathetic ganglion. Image is a collapsed stack of 35 

consecutive confocal images taken at 0.38 m optical section thickness (13.3 m total thickness). D. 

Thinner section in central region of ganglia to show that while SPNs appear to form basket-like synapses 

around postganglionics, CGRP
+
 afferents do not project through this region. Image is a collapsed stack of 

11 consecutive confocal images (4.18 m total). Scale bar is 100 m in A and 20 m in B-D. 
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I observed that axon bundles between ganglia contained considerable numbers of all three 

axon fiber types (Figure 4.3B).  Within the ganglia, while many GFP
+
 axons avoided the 

TH
+
 somas entirely, many also appeared to synapse on TH

+
 somas. In contrast, almost all 

CGRP
+
 axons projected outside the region of TH

+
 postganglionic somas, and there was 

no evidence of CGRP
+
 afferents forming synapses on postganglionic cell somas (Figure 

4.3D). Additionally no double labeling was seen for any of these makers, cleanly 

identifying these 3 axon fibers as distinct neurochemically-identifiable populations. 

4.4.2 Splanchnic Nerve Stimulation Activates Spinal Reflexes and Primary 

Afferent Depolarization 

Similar to peripheral muscle and cutaneous nerve stimulation, splanchnic nerve visceral 

afferent stimulation activated reflexes and slow VRPs in the ventral roots as well as slow 

dorsal root potentials (DRPs).  Due to the mixed afferent/efferent composition of the 

splanchnic nerve, these slow potentials are preceded by orthodromic volleys in the dorsal 

roots and antidromic volleys in the ventral roots.  Direct electrical recruitment of axons 

was verified by their persistence following block of chemical synaptic transmission after 

exchanging the bath to a nominally Ca
2+

 free ACSF (see Figure 4.2B).  The presence of 

orthodromic afferent volleys was examined and found in roots as far rostral as T6, 

supporting projections to multiple spinal segments of  afferents originating in the greater 

splanchnic nerve 
[13]

. 

While afferent volleys and ventral root reflexes could be recruited at stimulus intensities 

as low as 8 A, 50 s, greater stimulus intensities were often required to elicit a DRP 

Figure 4.4 provides an example of the relationship between stimulus intensity and the 
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recruitment of spike volleys, DRPs, and VRPs.  Stimulus intensities above 100 A/100 

s did not further increase DRP recruitment (Figure 4.4A), so this value was chosen for 

subsequent studies on neuromodulation.   On average, the DRP was onset was 31.7 ± 6.1 

ms after arrival of the first afferent volley, while the VRP onset was at 11.4 ± 8.0 ms 

(n=17).  The onset of the VRP always preceded the DRP therefore, on average by 19.8 ± 

8.4 ms.  DRPs lasted on average 565.6 ± 11.8 ms, reaching its peak 50.1 ± 10.1 ms after 

onset.  In 10/17 cases, the evoked DRP was accompanied by dorsal root reflexes (Figure 

4.2C).  Dorsal root reflexes represent a primary afferent depolarization of sufficient 

magnitude to be supra-threshold for action potential initiation in afferent terminals. 

In addition to being quicker in onset than the DRP, the VRP had a lower threshold for 

recruitment in all stimulus intensity trials (n=4/4), suggesting that the circuitry 

responsible for evoking the VRP includes a distinct shorter latency pathway (Figure 

4.4B).   While the visceral afferent- evoked VRP could follow stimulation up to 5 Hz 

without depression, the DRP was unable to follow stimulus frequencies greater than 

.0167 Hz (see Figure 4.4C).  Overall, these differences in onset, frequency sensitivity 

and threshold for recruitment all support the notion that evoked DRPs and VRPs are 

mediated by distinct circuits. 
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Figure 4.4 Differences in properties of DRPs and VRPs.   

A. Increasing stimulus intensities lead to increased afferent volleys and subsequent DRPs. Each trace is an 

average of 5 sweeps.  Note intensities greater than 100,100 increase afferent volleys (grey box), but not 

DRP.  B. Increasing stimulus intensities and effects on VRP.  Notice onset and duration difference between 

DRP and VRP.  Grey box denotes orthodromic volleys, seen at higher magnification on the right.  C. The 

DRP undergoes frequency dependent depression (here 2Hz). Note this is not the case for the VRP which 

can follow frequencies up to 5 Hz. D. Single trace of dorsal root from another experiment.  Grey box and 

higher magnification below show an example of dorsal root reflexes evoked. 
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I further examined the relationships between afferent fiber recruitment and the generation 

of the DRP.  The DRP did not appear to be recruited following activation of the lowest 

threshold afferents.  While lower stimulus intensities recruited fast conducting afferent 

volley(s), the DRP was not recruited until a larger stimulus intensity was used (Figure 

4.4A).  This can be seen in even more detail by analyzing individual traces with a 

stimulus intensity that recruits DRPs only a fraction of the time (i.e. when stimuli are 

near the DRP threshold).  Only when the stimulus successfully recruited additional, 

slower-conducting afferents was a DRP observed (Figure 4.5A).  Additionally, DRP 

generation was widespread throughout the thoracic spinal cord, as DRPs were recorded at 

the spinal levels sampled (T9-T13) with similar shape and onset (Figure 4.5B). This 

suggests that visceral-afferent induced PAD is systemic throughout the thoracic spinal 

cord,  and is consistent with the reported actions of somatosensory evoked PAD 
[146]

.   
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Figure 4.5 Relation between DRP, afferent fiber volley, and spinal segmental distribution.  

A. Several single dorsal root traces are shown at a stimulus intensity that straddled threshold for DRP 

recruitment.  Note that when the 2nd afferent spike is not present, no DRP is evoked (arrows). B. 

Comparison within the same animal of DRPs evoked in multiple roots.  Top traces, T9 and T13 dorsal roots 

superimposed.  Bottom traces, T12 and T13 dorsal roots superimposed in a different animal.  Right panels 

show higher magnification of afferent volleys.  Note that the later afferent volleys are similarly timed in 

roots as far as 4 spinal segments apart. Note also that DRPs are completely superimposable. 
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4.4.3 Extracellular Field Potentials 

Intraspinal recordings were performed to examine monoamine transmitter modulation of 

population synaptic transmission.  Extracellular field potentials (EFPs) reflect the 

postsynaptic transmembrane voltage changes evoked in the population of neurons around 

the tip of the electrode, here presumed to be population postsynaptic potentials.  Short-

latency EFPs have been used to report population monosynaptic afferent transmission 
[121, 

206, 213]
.    The electro-anatomic location of splanchnic visceral afferent-evoked EFPs were 

estimated using systematic field potential tracking, with starting locations 100-400 m 

below the ventral surface of the spinal cord and dorsally-angled penetrations up to 1100 

m.  Figure 4.6 shows approximate regions of the spinal cord where EFPs were 

recorded.  EFPs were consistently estimated to be maximal in the deep dorsal horn, with 

evidence of an earlier arriving EFP in some tracks in the superficial dorsal horn. This is 

consistent with known afferent termination sites of visceral afferents 
[37, 188, 247]

.   

The earliest onset of EFP in the deep dorsal horn was found to occur 4.5 ms after the first 

dorsal root afferent volley was seen, with a mean of 13.1 ± 6.9 ms across trials.  Onset 

variability within an individual preparation reflects the ability to elicit an EFP in many 

regions in the dorsal horn.  Interestingly, the largest amplitude EFP responses were not 

necessarily the earliest in onset, and had onsets 15.4 ± 5.8 ms after the first afferent spike 

was seen (occurring on average 20.6 ± 8.8 ms before onset of the DRP and often 

beginning before the VRP). Synaptic transmission at room temperature requires ~3ms 

[123]
, so the observed central latency is sufficiently long enough to be di- or tri-synaptic 

from the fastest arriving afferents volleys, or potentially monosynaptic from a later, 

slower conducting afferent fiber set (see Figure 4.5).  Regardless of whether the EFP 
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reflects monosynaptic actions from slower conducting afferents or polysynaptic actions, 

modulation of the evoked EFP would indicate actions on afferent pathways located 

within the deep dorsal horn.   

4.4.4 Monoaminergic Depression of Evoked Dorsal Root Potentials and Field 

Potentials 

Visceral-afferent evoked DRPs were depressed with single dose applications of 5HT, NE, 

and DA, with differing efficacies.  At 10M, 5HT depressed the evoked DRP to a mean 

of 10.1 ± 10.5% of control (n=3, p=.004). At 5-10M, NE also significantly depressed 

the evoked DRP to 6.4± 3.7% of control (n=3, p=5e
-4

).  At 10M, DA depressed the DRP 

amplitude but to a lesser degree (to 39.8 ± 27.8% of control; n=6, p=.003).  The largest 

amplitude evoked EFPs were used to assess monoaminergic modulation of afferent 

synaptic transmission.  5HT and NE depressed the EFP to a mean 27.7 ± 9.7 % and 12.1 

±5.4% of peak values, respectively (Figure 4.7A and B).   DA had variable effects on the 

EFP: substantial depression in 2/4 preparations, partial depression in ¼ preparation, and 

facilitation in ¼ preparation, resulting in a mean depression of 61.5 ± 54.8% (n=4; 

Figure 4.7C).  Interestingly, 5HT also induced a slight delay in afferent spike timing in 

the dorsal root (box, Figure 4.7A), indicating direct actions on the afferents themselves. 

The above depression in evoked EFP and DRP responses to 5HT, NE, and DA was not 

accompanied by a change in afferent volley amplitudes recorded in the dorsal root, 

indicating that the monoamines must be acting centrally. 
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Figure 4.6 EFP recording locations.   

A. Sample traces of EFPs evoked at various recording locations marked by numbers.  Each trace is an 

average of 5 sweeps. B. Peak amplitude of evoked EFPs for 2 separate experimental days. Picture on left 

shows microelectrode path denoted by separate numbers. Plot on right displays peak amplitude of EFP 

versus distance into the cord the microelectrode traveled. Grey box and oval denote largest EFP 

amplitudes and their locations recorded.  Bii corresponds to same experiment as traces in A.  C. 

Composite sketch estimation of where maximal EFPs were recorded, compilation of 5 experiments. 
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Monoamine neuromodulatory actions depend on the receptor subtypes activated as well 

as their location within the spinal neuropil. Evidence supporting differing receptor 

subtypes and/or sites of action was suggested from the time course of depression and 

recovery.  While the depression of DRP and EFP followed a similar trajectories for 5HT, 

the EFP recovered more rapidly after 5HT washout (Figure 4.8A).  For NE, the DRP 

depression preceded the EFP depression yet recovered much more slowly (Figure 4.8B).  

For DA, the depression and recovery of the EFP and DRP had a similar time course 

(Figure 4.8C).  Overall, as changes in the EFP should reflect those occurring at the first 

central synapse (see Discussion and Figure 4.13), an earlier and greater depression on the 

DRP compared to the EFP support modulatory actions at additional downstream sites for 

NE and DA. The slower and incomplete recovery of the DRP compared to the EFP also 

supports this interpretation for all monoamines.  

Similar to actions reported for 5HT in lumbar spinal cord in the neonatal rat 
[152]

, both 

5HT and NE depressed spontaneous DRPs in all cases where spontaneous DRPs were 

evident (n=3/3 for each; not shown).  This suggests that 5HT and NE inhibit intrinsic 

spinal circuitry that generates these spontaneous potentials. 

4.4.5 Dose Response  

To determine relative efficacies of DRP and VRP depression, cumulative dose-response 

curves were generated for 5HT, NE, and DA.   
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Figure 4.7 . Monoamine effects on splanchnic evoked responses. 

 A. Example of 5HT application.  Control is in black, 5HT is in grey. Close up of the boxed areas are 

boxed on the right. Note slight delay in afferent volley timing in the presence of 5HT.  B. Example of 

NE application.  Control is in black, NE is in grey, with close up of boxed areas on the right. No change 

in afferent timing. C. Example of DA application (grey). No change in afferent spikes. D. Peak 

amplitude depression for each drug as a % of control values, with standard deviation standard deviation 

bars.  Standard deviation bar clipped for DA EFP, large value due to the variability in response. 
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Figure 4.8 DRP, VRP, and EFP time-dependent comparison. 

Time dependent comparison of DRP, VRP, and EFP depression.  Time points before drug application and 

every five minutes afterward were computed by averaging 5 traces and normalizing their peak response to 

the pre-drug value. Lines connect the mean values across trials.  A. 5HT:  Note similar depression but 

delayed return to baseline of DRP compared to the VRP and EFP. B. NE: Note quicker depression and  

much slower return of DRP compared to other traces.  C. DA; All three follow a similar shape but with 

different offsets.   
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4.4.5.1 Serotonin 

Application of 5HT led to a dose-dependent depression of the visceral afferent- evoked 

DRP.  Figure 4.9A shows a sample of a cumulative dose-response trial in a single 

preparation. When the evoked response was normalized to the initial DRP and compared 

across trials, a mean IC50 value of 0.42 M was calculated (Figure 4.9B).  Similar to that 

seen in the ventral root, 5HT produced a dose-dependent depolarization of the dorsal root 

resting polarity (n=4/4; Figure 4.9C and D).   

4.4.5.2 Norepinephrine 

Similar to 5HT, application of NE lead to a dose-dependent depression of the visceral 

afferent- evoked DRP, with an IC50 value of 0.18 M (Figures 4.10A and B).  The 

baseline of none of the dose-response trials for NE was stable enough to determine 

resting polarity shifts. 

4.4.5.3 Dopamine 

Application of DA had a biphasic action on the visceral afferent-evoked DRP.  At low 

concentrations (i.e. < 5 M) DA had little effect if any, and even facilitated the DRP in 

the majority of trials (n=3/4; see highlighted region in Figure 4.11A).  On the other hand, 

at higher concentrations it dose-dependently depressed the DRP (Figures 4.11 A and B).  

The best-fit dose response curve calculated an IC50 value of 3.96 M.  Similarly to 5HT, 

DA produced a dose-dependent polarization of the dorsal root resting polarity (n=3/3; 

Figure 4.11 C and D) 
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4.4.5.4 Comparison of 5HT, NE, and DA Effects 

Tables 4.1 and 4.2 show a summary of actions of 1 M of 5HT, NE, and DA on the 

evoked DRPs and VRPs, respectively.  Note that NE>5HT>>DA in efficacy of blocking 

both the DRP and VRP amplitude and integral.  Since 1 M DA had little effect, 5 M 

values were also included for DA.  Note also in the cases of 5HT and NE, 1 M 

depresses much more of the DRP than the VRP. 

Table 4.1: Dorsal root potential changes by drug.  

 

* Denotes statistical significance, p<0.05.  ‡ Denotes 0.05<p<0.1.  DA (5mM) is also shown since 1mM of 

DA had mixed (if any) effects. 

 

Table 4.2: Ventral root potential changes by drug 

 * Denotes statistical significance, p<0.05.  ‡ Denotes 0.05<p<0.1.  DA (5M) is also shown since 1M of 

DA had mixed (if any) effects. 

Drug Amplitude                  

(% of control)         

Integral to peak        

(% change) 

Decay Integral              

(% change) 

Total Integral                    

(% change) 

5HT 

(1M) 

34.83 ± 16.51
*
 -65.24 ± 35.19

*
 -73.37 ± 25.53

*
 -71.20 ± 27.97

*
 

NE  (1M) 10.68 ± 11.62
*
 -89.66 ± 26.34 -91.91 ± 13.26

‡
 -91.41 ± 15.79

‡
 

DA (1M) 101.82 ± 9.93 -0.59 ± 19.96 12.41 ± 23.04 8.80 ± 22.28 

DA (5M) 49.46 ± 24.10
*
 -44.91 ± 31.83 -50.00 ± 24.78

‡
 -48.52 ± 26.33 

Drug Amplitude                  

(% of control)         

Integral to peak        

(% change) 

Decay Integral              

(% change) 

Total Integral                    

(% change) 

5HT 

(1M) 

56.75 ± 10.75
*
 -43.62 ± 36.07

*
 -50.56 ± 13.36

*
 -48.52 ± 21.39

*
 

NE  (1M) 42.84 ± 22.94
*
 -52.37 ± 25.11 -58.34 ± 13.34 -57.30 ± 17.23 

DA (1M) 98.28 ± 9.64 25.49 ± 12.17 -37.91 ± 63.31 -27.44 ± 58.46 

DA (5M) 60.06 ± 24.53
‡
 -14.68 ± 26.31 -67.00 ± 52.16 -56.74 ± 52.72 
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4.4.6 Comparison of Monoaminergic Depression on Visceral Afferent- evoked 

Responses in the Dorsal Root and Ventral Root 

4.4.6.1 Serotonin 

As described in Chapter 3, 5HT also depressed the visceral-afferent evoked VRP in a 

dose-dependent manner.  However, the depression of the DRP was not the same as that of 

the VRP.  This could be seen by comparing the depression of the VRP versus that of the 

DRP in Figure 4.12A.  For each dose-response trial, the relationship can be split into 

three time periods: 1) at low doses, where the DRP is slightly inhibited and the VRP is 

practically unchanged or even facilitated, 2) in midrange dosages, where both are 

depressed but to different degrees, and 3) at higher doses were both are nearly completely 

depressed.  This can be seen also by comparing the dose-response curves of both (Figure 

4.12B).  Note that both the slope and IC50 values differ, suggesting greater efficacy and 

likely an additional site of action of 5HT in depressing the DRP. 

4.4.6.2 Norepinephrine 

NE also depressed the visceral-afferent evoked VRP in a dose dependent manner.  In 

contrast to 5HT, the relationship of VRP to DRP depression was almost linear (Figure 

4.12C), with a slope of less than 1, indicating greater DRP depression than VRP 

depression at each point.  This can also be seen by comparing the dose response curves, 

as the dose-response of the DRP mirrored that of the VRP with a leftward shift (Figure 

4.12D). 
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Figure 4.9. 5HT actions on evoked and resting dorsal root properties.   

A. Sample of dorsal and ventral root potentials (VRPs) evoked by splanchnic nerve stimulation.  Each trace 

is the mean, normalized trace of 5 sweeps for each dose increment.  Each trace is color coded with 

corresponding dosage. B. Dose response trials for 5HT, with each trial a separate color.  Line is a best fit 

dose-response equation to all data points, IC50 value is the dose at which the evoked response is half the 

control value. C. Sample change in resting polarity during dose response.  Each point is the mean value of 

the traces pre-stimulus, by convention negativity is upward.  D. Normalized plots of resting ventral root 

polarity, average of 5 sweeps for each dose.   
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Figure 4.10 NE actions on evoked and resting dorsal root properties.  

A. Sample of dorsal and ventral root potentials (VRPs) evoked by splanchnic nerve stimulation.  Each trace 

is the mean, normalized trace of 5 sweeps for each dose increment.  Each trace is color coded with 

corresponding dosage. B. Dose response trials for 5HT, with each trial a separate color.  Line is a best fit 

dose-response equation to all data points, IC50 value is the dose at which the evoked response is half the 

control value. No analysis of resting dc polarity shifts was done for NE due to unstable baselines. 
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4.4.6.3 Dopamine 

As mentioned above, at low doses, DA facilitated the evoked DRP and had little effect on 

the evoked VRP, represented by the negative values in Figure 4.12E.  However, at 

higher doses the depression of the DRP and VRP followed a similar course, displaying a 

near linear relationship, similar to NE.  Thus, the dose-response curves for the VRP and 

DRP nearly overlapped at lower doses but followed a different slope for higher doses 

(Figure 4.12F). 

Had 5HT, NE, or DA depressed both the DRP and VRP in the same manner, one could 

hypothesize that the depression was occurring at a shared site.  Yet the above mentioned 

differences in dose-response curves and time-course of depression between the DRPs and 

VRPs implicate additional, separate, sites of action in the visceral-afferent evoked PSI 

and reflex circuitry. 
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Figure 4.11. DA actions on evoked and resting dorsal root properties.   

A. Sample of dorsal and ventral root potentials (VRPs) evoked by splanchnic nerve stimulation.  Each trace 

is the mean, normalized trace of 5 sweeps for each dose increment.  Each trace is color coded with 

corresponding dosage. Highlighted region notes concentrations less than 5uM which facilitated the evoked 

DRP but depressed the VRP.  B. Dose response trials for DA, with each trial a separate color.  Line is a 

best fit dose-response equation to all data points, IC50 value is the dose at which the evoked response is half 

the control value. C. Sample change in resting polarity during dose response.  Each point is the mean value 

of the traces pre-stimulus, by convention negativity is upward.  D. Normalized plots of resting dorsal root 

polarity, average of 5 sweeps for each dose.   
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Figure 4.12 Comparison of dorsal and ventral root effects.  

 A. 5HT induced depression of the ventral root potential (VRP) versus the dorsal root potential (DRP). 

Lines are individual experiments, the depression of the VRP plotted as a function of the DRP, all 

normalized to % depression of control peak amplitude. Vertical dashed lines denote general regions of 

differing slope. B. 5HT-induced dose response comparison of DRP and VRP. Lines are the fitted dose-

response curves for the DRP and VRPs computed earlier.  C. NE induced depression of the VRP versus 

the DRP. D.  Dose response curves for NE-induced depression. E. DA induced depression of the VRP 

versus the DRP. F. Dose response curves for DA-induced depression. 
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4.5 DISCUSSION 

While the spinal cord receives a multitude of sensory information, only a small 

percentage of that information is visceral (e.g. 
[38, 188]

).  Yet, this comparatively minor 

sensory contribution is able to inhibit other types of afferent inflow 
[64, 71, 228]

.  This study 

introduced a novel in vitro preparation to characterize spinal visceral afferent stimulation-

evoked primary afferent depolarization (PAD)-mediated presynaptic inhibition (PSI), and 

builds on the first investigation of this phenomenon over 40 years ago 
[228]

.  Splanchnic 

and sympathetic chain stimulation produced a DRP, a measure of PAD, in dorsal roots of 

multiple thoracic spinal segments, similar in duration to that reported after the stimulation 

of muscle and cutaneous afferents (e.g. 
[67, 68, 102, 213]

).  This DRP was strongly depressed 

by the monoamines serotonin (5HT), norepinephrine (NE), and dopamine (DA), with 

IC50 values of 0.42, 0.18, and 3.4 M, respectively.  Assuming that the DRP is an 

expression of PAD-evoked PSI, this implies that the activation of the descending 

monoamine systems serves to limit visceral afferent activity-dependent inhibition, 

thereby enhancing the role that certain types of sensory information can have on spinal 

circuitry. Yet the extracellular field potential (EFP), indicative of the visceral afferents’ 

first site of communication with the spinal cord, was also diminished.  This implies that 

the monoamines have the ability to depress both specific visceral afferent transmission to 

the spinal cord, as well as the PAD of visceral and other afferents evoked by visceral 

activity.  The implications of these opposing actions will be discussed in more detail 

below. 



124 

 

4.5.1 Composition of the Sympathetic Chain and Greater Splanchnic Nerve 

Triple labeling for CGRP, TH, and HB9-GFP indicated the presence of 3 distinct fiber 

populations that travel between the paravertebral sympathetic ganglia.  CGRP
+
 visceral 

afferents did not appear to synapse on TH
+
 sympathetic postganglionic neurons, often 

avoiding postganglionic cell bodies entirely, unlike direct synapses reported between 

afferents and postganglionic neurons in pre-vertebral ganglia 
[130, 208]

.  That visceral 

afferents are known to show both spontaneous activity 
[12, 131]

 and responses to 

neuromodulators 
[101]

 should caution against interpreting recordings from the sympathetic 

chain or splanchnic nerve as solely efferent and predominantly preganglionic (e.g.
[222, 

245]
).     

4.5.2 Visceral-afferent Evoked Dorsal Root Potentials 

Overall I observed that electrical stimulation of the splanchnic nerve or sympathetic chain 

strongly activated motor reflexes and presynaptically inhibited afferent inflow via a 

PAD-mediated DRP at multiple spinal segments. Splanchnic or sympathetic chain 

stimulation produced a DRP in every preparation tested.   

The DRP duration measured was similar to that reported in response to activation of 

muscle and cutaneous afferents, but the average DRP onset and peak amplitude occurred 

much later 
[67, 102, 146, 206]

 .  Given that visceral afferents in the splanchnic nerve often 

travel multiple segments in the sympathetic chain before entering the spinal cord 
[5, 13]

 

and project to multiple rostral-caudal levels upon entering it 
[37, 65, 246]

, it difficult to 

speculate how many interneurons in the spinal cord integrate this multi-segmental (and 

likely differentially timed) afferent inflow.  Additionally, while a previous study 
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indicated that visceral afferent activation could lead to PAD-mediated DRP in both 

visceral and cutaneous afferents 
[228]

, further investigation is required to discern which 

types of afferents were responsible for generating the DRP (and thus were inhibited by 

visceral afferent stimulation). 

Interestingly, the DRPs evoked in multiple segments followed a similar time course.  

This similar patterning at multiple spinal levels is supported by previous work from 

Lidierth in 2006, who showed that nonspecific afferent stimulation lead to two types of 

DRP: one short latency to onset in dorsal roots close to the stimulation site, and one 

longer latency recorded from more distant segments 
[146]

.  While the short-latency DRP 

onset increased with each spinal segment distal to the stimulation site, the longer latency 

DRP had similar onset latency across multiple segments.  In the splanchnic-spinal cord 

preparation, only the latter, diffuse activation of DRPs was present.  It is likely that this 

diffuse activation allows visceral afferents to presynaptically inhibit visceral and somatic 

afferent inflow throughout the spinal cord 
[71, 227, 228]

.   

Yet, even compared to the diffuse longer-latency DRPs described by Lidierth, visceral 

afferent-evoked DRPs had a much later onset than previously reported for somatic DRPs 

[67, 146, 206]
.  Observed DRP latencies were, however, comparable to those reported in the 

one other study analyzing visceral afferent evoked DRPs 
[228]

.  Differences in latency 

observed between somatic vs. visceral afferent-evoked DRPs are likely due at least in 

part to the composition of splanchnic afferents, which are predominantly thinly 

myelinated and unmyelinated A and C fibers, respectively 
[2, 3, 78, 134, 188]

.  These fibers 

are more slowly conducting than somatic cutaneous and muscle afferents, which also 

contain much faster conducting Aβ and group I and II afferents respectively.  Differences 
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in latency may also have been observed because the latencies I reported were measured 

from the arrival of the first afferent volley identified.  If the DRP was induced by higher-

threshold, slower-conducting axons (Figure 4.5A), or axons innervating a different spinal 

segment, this measure of central delay may be artificially inflated.  On the other hand, I 

observed that ventral root reflexes recruited by the stimulation of the same afferent fiber 

population occurred on average 20ms earlier, demonstrating that long central latencies 

are not primarily caused by afferent conduction delays.  One additional explanation 

would be if visceral afferents also constitute the majority of fibers underlying the evoked 

DRP, where differences in conduction speed may also slow back propagation of afferent 

depolarization to the recording site.  Lastly, the intrinsic spinal circuitry responsible for 

generating visceral afferent evoked PAD may differ in mechanism and/or number of 

synaptic connections than that evoked by muscle and cutaneous afferents.  The validity of 

these hypotheses needs to be explored more fully in future studies. 

Interestingly, dorsal root reflexes (DRRs) were often elicited by visceral afferent 

activation.   DRRs in fine afferents have been linked to inflammation in joint and 

cutaneous afferents (e.g 
[116, 153]

, see 
[268]

 for review), as dorsal root activity can propagate 

antidromically to peripheral nerve endings, due at least in part to the release of 

neuropeptides (such as substance P and CGRP) from sensory nerve terminals (e.g. 
[8, 23]

).  

In the case of visceral afferents, whose peptidergic phenotypes are well established 
[127, 

147, 182, 258]
, DRRs may lead to visceral hypersensitivity and potentially recruitment of 

additional nociceptors 
[86]

.  As visceral afferents are also thought to regulate local organ 

function and blood flow from back-propagating afferent activity 
[112]

, DRRs may also 

contribute to the regulation of basic organ function. Additionally, as recently proposed by 
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Rudomin 
[219]

, neuropeptides co-released by visceral afferents in the dorsal horn could 

serve to modulate glutamate release 
[126]

 or otherwise alter visceral afferent CNS 

transmission.  The PAD-induced DRP accompanied by DRRs, can therefore have a dual 

nature, exerting presynaptic inhibitory actions on central synaptic transmission while 

concomitantly modulating visceral organ function 
[268]

.   

4.5.3 Visceral Afferent-evoked Field Potentials 

Extracellular field potentials (EFP) were recorded to investigate the modulation of 

visceral afferent transmission at the first synapse in the spinal cord.  Our EFP tracking 

experiments identified maximal responses in the deep dorsal horn (with responses 

recorded in select regions in the deep and superficial dorsal horn).  This is consistent with 

extracellular recordings of spinal neurons in the cat and rat 
[2, 3, 41, 98, 201, 251]

 as well as 

anatomical labeling studies of visceral afferent projections in the spinal cord 
[37, 188]

.  Yet, 

EFPs recorded were of a surprisingly long latency from the first afferent spike timing 

recorded.  These long-latency, afferent-evoked DRPs (figure 4.5A) may thus be 

mechanistically associated with EFPs arising from afferents with slow central conduction 

times.  Supporting this assertion, earlier researchers indicated that while visceral nerves 

contain some larger myelinated axons 
[134]

, only stimulus intensities large enough to 

activate at least A fibers were required for activation of spinal neurons or cord dorsum 

recordings 
[3, 98]

.   Further exploration is thus warranted to determine the makeup and 

timing of afferent spikes causal to the DRP.  Only then can time-dependent analysis of 

the number of synapses be completed in analyzing the evoked EFPs. 
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4.5.4 Monoaminergic Modulation of Dorsal Root Potentials and Field Potentials 

In addition to the depression of visceral afferent evoked spinal reflexes noted in Chapter 

three, the monoamines (MAs) also depressed visceral afferent evoked DRPs in a dose-

dependent manner (for exceptions see DA effects in 4.5.4).  Yet DRP generation depends 

on visceral afferent transmission to the spinal cord (Figure 4.13), and any actions directly 

inhibiting this transmission would diminish the DRP.  EFPs, an indication of synaptic 

transmission of visceral afferents at the first synapse, were also potently depressed by 

5HT, NE, and sometimes DA. This suggests that much of the observed actions on DRPs 

are not associated with a depression of the spinal circuits that generate PAD, but rather 

simply due to a block of all incoming afferent transmission to the spinal cord.  In essence, 

by depressing synaptic transmission of visceral afferents, the MAs act to generally 

impede the amount of visceral information reaching the central nervous system, and do so 

with much greater efficacy than do low threshold muscle and cutaneous afferents 
[206]

. 

This interpretation is consistent with previous work showing that the monoamines 

generally depress afferent-evoked monosynaptic transmission to individual neurons in the 

deep dorsal horn 
[84]

.    

However, time-dependent differences and efficacies of MA depression of DRPs, EFPs, 

and VRPs suggest that this is not the only site of action.  While our low frequency of 

stimulation made it difficult to ascertain temporal differences in the onset of depression, 

EFPs and VRPs often recovered from MA-induced depression sooner than DRPs (Figure 

4.8).  Coupled with the observed nonlinear MA-induced depression between evoked 

dorsal root and ventral root responses (Figures 4.12) and the simultaneous inhibition of 

spontaneous DRPs, it is unlikely that the depression of the DRP is simply a depression of 



129 

 

synaptic transmission at the first-order afferents.  Overall, it appears that the monoamines 

modify spinal processing of afferent input in at least two ways: 1) decreasing visceral 

afferent transmission to the spinal cord (↓EFP) and 2) increasing afferent transmission by 

limiting PAD-mediated presynaptic inhibition circuitry (↓ DRP).  These differential 

actions on afferent transmission have been shown in response to low threshold muscle 

and cutaneous afferent stimulation 
[206]

, and are consistent with actions on subsets of low 

threshold afferents (depression of group II afferent transmission but facilitation of group I 

afferents) 
[24, 25, 119, 233]

. 

The functional consequences of this dichotomy likely depend on the selectivity of the 

evoked PAD.  If PAD-mediated PSI in visceral afferents serves primarily to facilitate 

specific organ function (e.g. inhibiting pudendal afferent evoked responses during 

micturition 
[9]

), descending monoamines may act to decrease the effectiveness of these 

functions by acting on PAD circuits.  With visceral-related PAD depressed, visceral and 

related afferents would have greater accessibility to the CNS (thus allowing more 

information flow).   If, on the contrary, PAD is evoked in non-function specific visceral 

and somatic afferents, blocking afferent-evoked PAD would have more widespread 

actions.  The powerful depression of spontaneous DRPs supports a depression of PSI in 

multimodal afferents, thus increasing the accessibility of all afferents to the spinal cord.  

Taken in combination with reportedly selective actions on subsets of muscle and 

cutaneous afferents, where monoamines have been shown to inhibit synaptic transmission 

of nociceptive cutaneous and group II muscle afferents but have little or facilitative 

action on transmission from low-threshold cutaneous and group I muscle afferents 
[24, 25, 
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120]
, this would effectively shift the responsiveness of the CNS in favor of low threshold 

mechanosensory and cutaneous afferent information.     

Conversely, if the MAs instead acted directly on primary afferents to block synaptic 

transmission via metabotropic receptor-mediated presynaptic inhibition, all afferents 

would be diminished in their ability to alter ongoing spinal circuit actions.  Clearly, the 

site and pattern of MA release within the spinal cord is crucial to understanding their 

functional role. 

 If descending tracts were activated in a more physiological manner, would synaptic 

transmission at the first synapse and later sites of action in the spinal cord be 

differentially affected? Within the dorsal horn, descending monoaminergic tracts appear 

not to synapse directly on individual neurons but rather act via volume transmission 
[175]

.  

This implies that primary afferent terminals and nearby interneurons may receive similar 

monoaminergic input, and is consistent with laminar and functional selectivity in 

modulation reported for field potentials evoked by muscle afferents 
[120]

.  The 

combination of direct function-specific inhibition of visceral afferent transmission and 

location- and function-specific depression of PAD, offer the spinal cord nuanced control 

over selecting afferent input. 

Even with nonspecific release of monoamines throughout dorsal horn, there may be 

functionally important, time-dependent differences for each site of action.  When both 

5HT and NE were applied, the DRP recovered much more slowly than the EFP, 

suggesting that short exposure to these monoamines would lead to a lengthy depression 

of PAD, and thus subsequently increased access of visceral afferents to the CNS.  This 
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prolonged DRP depression (especially in the case of NE) may in turn produce a state of 

enhanced responsiveness to visceral afferent information and, as referenced above, likely 

a disruption of normal organ regulation.  Similarly, EFP and DRP depression may have 

different dose sensitivity, shifting the balance in favor of exaggerated or depressed 

accessibility of visceral afferent information to the CNS, depending on activity levels of 

the descending MA systems.  

MA release patterns and activation selectivity are vital next steps to understanding the 

role and extent of these seemingly opposing actions, but are beyond the scope of the 

current study. 

4.5.5 Dopamine’s Dose-dependent Actions 

Interestingly, actions of DA on ventral root and dorsal root responses were different 

depending on the dose used.  Low doses of DA increased the evoked DRP (increasing 

PAD-mediated PSI of afferent inflow) while having little effect on the VRP, thus more 

effectively preventing afferent input from reaching the central nervous system.  

Differences may relate to a segregation of receptor subtypes of differing receptor 

affinities for DA, with receptors that facilitate the DRP activated at lower concentrations.  

As mentioned in Chapter 3, this is consistent with dose-dependent actions in the pre-

frontal cortex, where low doses of DA preferentially activated D1-like receptor pathways 

and higher doses of DA masked these effects by activation of D2-like effects 
[254, 280]

.   This 

has particularly strong implications for circadian and disease related decreases in DA 

release 
[48, 49]

, as it is likely that visceral afferent information would be preferentially 

dysregulated. 
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4.5.6 Putative Mechanisms 

The descending monoaminergic systems may influence both monosynaptic transmission 

of visceral afferents and visceral-afferent induced PAD differently based on differing 

receptor expression patterns.  Monoamines can affect neuronal excitability by activating 

metabotropic receptors that both modulate ion channels directly (e.g. 
[35, 137]

) and 

modulate common signal transduction pathways (see 
[176, 178]

 for review, Figure 1.4 for 

more detail).  Many monoaminergic receptors are present in spinal neurons and primary 

afferents (see 
[175]

 for review). Therefore, the site of modulation may be (1) on primary 

afferents themselves, (2) their first site of synaptic transmission to the spinal cord, (3) 

interneurons involved in generating PAD, or (4) on afferent fibers receiving PAD.  Figure 

4.13 shows a schematic of the potential sites of action. 

4.5.6.1 Direct Actions on Primary Afferents 

Given that 5HT and DA produced depolarizations of the resting dorsal root polarity, and 

5HT delayed the arrival of afferent volleys in the dorsal roots, the monoamines may have 

direct actions on visceral afferents themselves.  Potential sites of action are ionotropic 

5HT3 receptors shown to be present on afferent axons, a subset of which are CGRP
+
 
[51, 

167]
; and metabotropic Gi-coupled inhibitory autoreceptors, such as 5HT1 serotonergic, D2-

like dopaminergic, and 2 adrenergic receptors, which may inhibit transmitter release by 

inhibiting Ca
2+

 channels and facilitating K
+
 channels (e.g. 

[70, 79]
, see 

[175, 178]
 for review).  

4.5.6.2 Postsynaptic Actions on the First Synapse or Interneurons Involved in PAD 

Generation 

EFPs were also predominantly depressed by the monoamines.  Inasmuch as they are a 

reflection of first synaptic activation by visceral afferents, EFP depression reflects an 
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inhibition of primary afferent synaptic transmission within the dorsal horn.  This could be 

caused by post-synaptic 5HT1 , 2 adrenergic, and  D2-like Gi -coupled receptors, which 

have been shown to reduce phosphorylation of non-NMDA glutamatergic receptors (e.g. 

[184]
) and modulate the release of CGRP (e.g. 

[249]
) in the spinal cord.  Additionally, Gi 

coupled receptors could act post-synaptically to inhibit Ca
2+

 channels and enhance K
+
 

channel function, generally inhibiting neuronal function.  This has been shown to occur 

in the dorsal horn for 5HT1A/1B/7 serotonergic 
[85, 279]

 , 2 adrenergic 
[83, 215, 265]

, and D2-like 

dopaminergic receptors 
[250]

. 

4.5.6.3 Actions on Synaptic Relay to Primary Afferents Producing PAD 

Lastly, the monoamines could be acting on higher-order interneurons, including the last-

order interneurons necessary to produce PAD.  The present series of experiments did not 

assess the composition of afferents that were depolarized to produce the DRP.  However, 

given the known interactions with visceral inhibition of somatic circuits (e.g. 
[228]

) and 

interactions between multiple afferent types (e.g. 
[219]

), the DRP may reflect a 

heterogeneous mix of both visceral and somatic afferents.  The direct actions on primary 

afferents discussed above (i.e. general depolarizations of the resting dorsal root polarity) 

may also act to inhibit DRP generation by preventing further depolarization of the 

primary afferents (i.e. depolarization block).  Lastly, if the visceral-afferent evoked DRP 

is indeed generated by last order GABAergic interneurons, Gi coupled receptor activation 

could additionally inhibit GABAergic transmission (e.g. 
[76, 238]

). 
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Overall, the contribution of various monoamine receptors at specific sites in the PAD 

generating pathway in unclear.  The speculations above describe many of the potential 

sites of action, but further investigation is required to fully assess these. 

 

Figure 4.13  PAD-mediated presynaptic inhibition circuitry.  

The intraspinal circuit responsible for PAD may involve one or more interposed interneurons. 5-HT, NE 

and DA may exert actions on one or multiple of the following locations: 1) presynaptically directly 

inhibiting afferent transmission, 2) inhibiting synaptic transmission to putative interneurons or altering 

their excitability so that fewer are recruited to produce PAD, or 3) inhibiting last order GABAergic 

transmission to the afferents producing PAD.  Dashed line represents connections that may be directly or 

oligosynaptic. 
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4.6 CONCLUSIONS 

In this chapter, I developed an in vitro mouse model to assess how the spinal cord 

processes visceral afferent information.  This model, and its ability for direct 

manipulation of the extracellular environment, will be a useful tool in exploring visceral-

evoked PAD-mediated presynaptic inhibition.  The monoamines 5HT, NE, and DA all 

acted to suppress visceral afferent evoked DRPs and EFPs, suggesting complex 

regulation of afferent input to the CNS.  5HT, NE, and DA all had a unique signature of 

effects.  It is likely these differences in signatures reflect multiple sites of action for each 

drug tested. 
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  CHAPTER 5

CHAPTER 5: CONCLUSIONS 

Most of the motor output to the visceral organs is not under our voluntary control, nor 

does sensation from them often reach consciousness.  The spinal cord therefore plays an 

integral role in processing visceral sensory information and generating visceral motor 

output.  Understanding how the spinal cord does this, and how descending systems 

modulate this activity, is crucial to understanding the subconscious regulation of this 

significant and unfortunately understudied part of the nervous system. 

5.1 SUMMARY AND DISCUSSION OF KEY FINDINGS 

The primary objective of this work was to understand spinal processing of sympathetic 

output and visceral sensory input, and what role the descending monoamines play in 

modulating this.   

Aim 1 characterized the electrophysiological properties in the final central output 

neurons of the sympathetic nervous system, sympathetic preganglionic neurons (SPNs).  I 

used the HB9-GFP transgenic mouse as a model system, both due to the ease of 

identifying SPNs as well as the ability to lay the foundation for future transgenic 

approaches to characterize autonomic function.  Using whole-cell patch clamp recordings 

from visually identified SPNs in the intermediolateral column (IML) of neonatal and 

juvenile mice, I demonstrate a diversity of SPN electrophysiological properties.  Mouse 

SPNs showed similar passive and active membrane electrical properties when compared 

to other animal models, although individual properties varied significantly across the 

neurons tested.  Given that SPNs with varying end-targets are known to co-localize 
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within the same IML clusters, and that the SPNs recorded from in this study were likely 

functionally diverse, this suggested that SPNs may be differentiable based on 

electrophysiological characteristics.  Indeed, while linear regression analysis identified 

strong relationships between many cellular properties in all neurons tested, cluster 

analysis was able to identify four subpopulations of SPNs. This demonstrated that the 

IML contains populations of SPNs that are differentiable by their membrane properties, 

and that sympathetic efferent populations may have a differential recruitment order 

similar to that of somatic efferents (motor neurons).  Motor neurons also express the HB9 

transcription factor that defines these two efferent neuronal classes as originating from a 

common ‘efferent’ progenitor population 
[11, 252]

. 

Given that there are differentiable populations of SPNs, one question is whether 

descending systems treat subpopulations of SPNs differently.  The descending 

monoaminergic systems are state-dependently active, yet what role they play in 

modulating spinal sympathetic output and visceral input is poorly understood.  In Aim 2, 

I sought to reconcile sometimes contradictory evidence on the effects of the monoamines 

serotonin (5HT), norepinephrine (NE), and dopamine (DA) on SPNs.  To do so I took a 

three pronged approach.  First, I directly assessed the influence of 5HT, NE, and DA on 

intrinsic properties of individual SPNs, using patch-clamp recordings in the neonatal slice 

preparation.  Next, I developed a novel in vitro spinal cord and sympathetic chain 

preparation, which allowed me to assess the neuromodulation of population responses of 

SPNs (and motor neurons) to visceral afferent stimulation.  Lastly, I complemented 

physiological experiments on monoamine transmitter neuromodulation with 

immunohistochemical detection of putative receptors underlying these effects.   
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I observed that each monoamine had a unique signature of effects on sympathetic motor 

output.  5HT consistently depolarized all intracellularly recorded SPNs, increased their 

response to injected current, and often led to increased spontaneous activity recorded in 

the ventral root.  NE actions were more mixed, leading to both depolarizations and 

hyperpolarizations in intracellularly recorded SPNs.  Yet regardless of action on resting 

membrane potential, in all cases NE increased SPN firing responses to injected current, 

and increased spontaneous activity in the ventral root.  Using immunohistochemistry, I 

identified 5HT2A/7 serotonergic, and 1a/2a adrenergic receptors on some SPN somas and 

processes.  5HT2A, 5HT7, and 1a receptors are GQ or Gs coupled, and likely activate 

signal transduction pathways that ultimately underlie increases in SPN excitability. In 

comparison, 2a adrenergic receptors are Gi-coupled, and likely inhibit signal 

transduction pathways that are ultimately responsible for inhibitory actions of NE 
[62, 176]

. 

Dopamine exerted the most complicated actions. Like NE, DA depolarized some while 

hyperpolarizing other intracellulary recorded SPNs.  However, unlike 5HT and NE, DA 

also had mixed responses on SPN firing to injected currents. These mixed actions on SPN 

excitability were supported by differential dose-dependent effects identified in the ventral 

root recordings, where DA was depolarizing at lower doses and hyperpolarizing at higher 

doses.  Immunohistochemical evidence was provided for SPN expression of D2, D3, and 

D5 receptor subtypes.  The presence of both Gs-coupled receptors (D5) and Gi-coupled 

receptors (D2,3) identified likely underlie this dichotomy, given their opposing actions 

common signal transduction pathways 
[178]

. 
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In contrast, however, all three monoamines consistently depressed visceral-afferent 

evoked responses.  Taken together, my results indicate that as a whole, the descending 

monoaminergic systems both facilitate autonomic motor output and inhibit visceral 

sensory input.  This is consistent with a general hypothesis about 5HT forwarded by 

Jacobs and Fornal 
[111]

 almost 20 years ago on the somatic sensory and motor systems, 

that 5HT acts to suppress afferent information but enhance motor output. Given that 

multiple autonomic reflexes are driven by visceral afferents 
[115]

, this would result in a 

decoupling of autonomic output from visceral input, instead favoring descending input or 

intrinsic spinal circuitry mediated- output.   

These seemingly contradictory effects of exciting sympathetic output yet inhibiting reflex 

responses to visceral input were explored further in Aim 3.  One of the most effective 

means of inhibiting afferent inflow is presynaptic inhibition (PSI), yet there are 

conflicting reports whether visceral afferents exhibit PSI.  Using the preparation 

developed in Aim 2, I showed that visceral afferents in the splanchnic nerve and 

sympathetic chain do indeed evoke a widespread dorsal root potential (DRP), indicative 

of primary afferent depolarization (PAD), an ionotropic form of PSI.  Both 5HT and NE 

dose-dependently depressed the DRP.  Yet, measurements of the earliest evoked 

extracellular field potential (EFP) in the deep dorsal horn, reflecting initial synaptic 

transmission from primary afferents, were also depressed by 5HT and NE.  Temporal 

differences in depression and recovery implicate at least two distinct sites of action: (i) 

direct inhibition of afferent transmission to the spinal cord, and (ii) inhibition of the 

interneuronal circuitry that leads to PAD.  Interestingly, at low doses DA facilitated the 

DRP, thus increasing PAD (and limiting afferent accessibility to the spinal cord), while at 
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higher doses acting like 5HT and NE and inhibiting the DRP and visceral afferent 

transmission to the spinal cord. My results demonstrate that minus low doses of DA, the 

monoamines can depress both visceral afferent transmission to the spinal cord and PAD 

evoked by visceral afferents.  The functional implications of this will be discussed further 

in section 5.3. 

5.2 FUNCTION OF VISCERAL AFFERENT-EVOKED PRESYNAPTIC INHIBITION 

Spinal visceral afferents encode physical changes (e.g. distension, contraction) or 

chemical events in the viscera and transmit this to the CNS, leading to organ regulation 

and reflexes (and occasionally conscious sensation) 
[112]

. Yet, except for sacral afferents, 

most spinal visceral afferents lack functional specificity, responding to mechanical, 

chemical, and sometimes thermal stimuli (e.g. 
[143]

, see 
[113]

 for review).  Additionally, 

spinal visceral afferents are the predominant conduit for visceral pain information, yet the 

majority of them are also active under resting conditions 
[12, 113]

.  With this multimodal 

barrage of visceral sensory inflow, how do central neurons differentiate between organ 

regulation, non-painful sensation, and visceral pain?  

Further complicating matters, spinal visceral afferents activate both sympathetic and 

parasympathetic reflexes, which often have opposing actions on the target tissue.  How 

does the CNS decode complex visceral information and determine the appropriate 

response? 

One of the most influential and afferent-specific forms of limiting synaptic transmission 

is to inhibit afferents presynaptically.  Yet, studies of visceral-afferent mediated PSI are 

quite limited.  After findings suggesting that some vagal afferents are devoid of PSI 
[218]
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(but see 
[217]

), the prevailing opinion has been that visceral afferents lacking PSI allow for 

automatic regulation of organ function, without filtering out vital visceral afferent 

information 
[219]

.  Yet vagal afferents have much greater functional specificity, often 

selectively relaying a single type of visceral sensory information, and most are not 

involved with relaying visceral pain 
[112]

.  On the other hand, spinal visceral afferents 

convey multiple modalities of visceral sensory information and are the predominant 

pathway to the central nervous system for visceral pain conduction.  It seems imperative 

that spinal visceral afferents (even more so than their vagal counterparts) have the PSI 

toolkit with which to selectively filter afferent inflow. 

Indeed, organ specific presynaptic inhibition has been implicated in control of micturition 

[9, 30]
.  Additionally, often overlooked earlier work of Selzer and Spencer showed that 

visceral afferents can inhibit both visceral and cutaneous afferents, with presumed 

presynaptic mechanisms 
[228]

.  This dissertation explored this further, specifically 

addressing afferents in the greater splanchnic nerve that innervate the majority of 

abdominal viscera.  Splanchnic afferent stimulation induced a DRP in multiple spinal 

segments, suggesting that visceral afferent activation can presynaptically inhibit afferent 

input throughout the spinal grey.  Given the relative scarcity of visceral input to the spinal 

cord compared to their somatic counterparts, the extent of the visceral afferent-mediated 

reflex responses and DRP generation are particularly noteworthy. 

Interestingly, evoked DRPs were commonly associated with depolarizations of sufficient 

magnitude to recruit backward propagating dorsal root reflexes. An implication of this is 

that spinal circuits can use afferents to function as efferents 
[268]

.  This would lead to 

back-propagating afferent synaptic transmission into the periphery, releasing 
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neuromodulators (e.g. CGRP) and/or other signaling molecules that regulate organ 

function and blood flow 
[10, 106, 112, 161]

.    If true, DRPs may not serve to primarily provide 

PSI to central afferents, but instead serve as a vehicle to centrally induce peripheral 

sensitization.  

The present study does not identify the afferent modalities responsible for initiating DRPs 

or whether these are the same afferents that generate DRPs.  However, it is generally true 

that PSI is strongest on the same fiber types 
[219]

. Clearly, knowledge of which visceral 

afferents are inhibited is crucial to understanding the physiological role of the generated 

PSI.  For example, is the primary function of abdominal visceral afferent mediated PAD 

the local coordination of organ regulation, such as the effects of inhibiting perineal 

afferents involved in micturition 
[30]

?  Or does visceral-afferent mediated PAD spread to 

unrelated afferents?  Visceral stimulation (colorectal distension) has been shown to have 

inhibitory actions of on renal afferent related dorsal horn interneurons 
[41]

, suggesting that 

functionally unrelated visceral afferents may interact with one another and/or have 

actions on shared spinal circuitry.   Additionally, given that spinal visceral afferents are 

known conduits of visceral pain information, was our intensity of stimulation used to 

elicit DRPs sufficient to generate pain?  Future studies are warranted to address these and 

other questions vital to understanding central regulation of visceral afferents. 

5.3 MONOAMINERGIC MODULATION OF SPINAL AUTONOMIC CIRCUITS 

Both 5HT and NE simultaneously inhibited visceral afferent transmission to the spinal 

cord as well as spinal circuitry generating PAD in dorsal root afferents.   Below, I’ll 

outline the implications of this in terms of (i) afferents inhibited at or before the first 
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synapse to the spinal cord, (ii) afferents disinhibited by depression of the DRP, and (iii) 

autonomic reflexes and organ regulation. 

Regulation of afferent input at the first synapse depends on the type of sensory fiber 

activated.  It appears that while monoamines strongly depress initial transmission from 

group II muscle afferents 
[24, 25, 119]

, cutaneous nociceptors 
[75]

, and from this dissertation, 

visceral afferents, they can have little effect or even facilitatory actions on non-pain 

encoding low threshold muscle and cutaneous afferents 
[24, 206]

.   If spinal visceral afferent 

transmission is in fact predominantly nociceptive 
[112]

, this is consistent with known anti-

nociceptive actions of 5HT, NE, and DA in the spinal cord 
[175]

. In effect, by depressing 

synaptic transmission of these subsets, 5HT and NE act to prune the sensory information 

received by the spinal cord, making it easier to focus on other types of presumably 

behaviorally relevant sensory input. 

Not only do 5HT and NE appear to directly inhibit visceral afferent transmission to the 

spinal cord, but as evidenced by differential dose and time-dependent effects on evoked 

DRPs, VRPs, and EFPs, they also act on downstream sites in the PAD-mediated PSI 

circuitry (Figure 4.13).  Yet what are the functional consequences of inhibiting visceral-

afferent evoked PAD and visceral afferent transmission?  First, if PAD acts as an 

activity-dependent filter of sensory information, by removing this filter the monoamines 

alter the state of spinal visceral sensory processing.  In the presence of descending 

monoamines, the central nervous system would thus receive a wider array of sensory 

information at a lower gain.  This may serve to dampen low-intensity afferent inflow but 

still allow for processing of high-intensity or systemic afferent signaling.   
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Additionally, afferent-evoked PAD often functions as a local spinal phenomenon, even 

having the potential to occur only in certain branches of the same afferents 
[69]

.  

Combined with the potential efferent functions activated via dorsal root reflexes that can 

accompany the DRP, the same selectivity mechanisms may be transferable peripherally 

to locally influence organ function and blood flow.  Therefore, it is conceivable that 

monoaminergic depression of the DRP could alter peripheral visceral function and 

disrupt organ regulation. 

However, by analyzing the effects of bath applied MAs, this study assessed the combined 

effects of nonspecific neuromodulation of the spinal cord. Differential, location specific 

regulation would therefore not be visible with the current configuration.  Yet, if 

descending 5HT and NE tracts indeed do not synapse directly on dorsal horn neurons but 

rather act via volume transmission 
[175]

, actions on primary afferents terminals as well as 

nearby dorsal horn neurons should be affected similarly.    In fact, laminar selectivity in 

modulatory action has been reported for muscle-afferent evoked field potentials 
[120]

, with 

each monoamine having more potent actions at distinct spinal sites.  Additionally, 

descending nuclei may be differentially activated 
[207]

, allowing for more targeted 

modulation of sensory input.  Taken together, monoaminergic depression at the first 

spinal synapse may be differential based on afferent modality, while later actions within 

the spinal cord PSI circuitry differ based on anatomical location.   

On the output side, 5HT and NE inhibited both spontaneous and visceral afferent-evoked 

motor reflexes in the ventral root, yet increased overall excitability of SPNs.  If activated 

simultaneously, this pairing of increased excitability to sympathetic efferents and 

decreased responsiveness to autonomic afferents would argue for a decoupling of 
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sympathetic output from visceral input, perhaps preferentially shifting autonomic nervous 

system to a feed-forward system, where descending command pathways or intrinsic 

spinal circuits dictate motor output.    

However, as opposed to their diffuse projections in the dorsal horn, 5HT and NE directly 

provide conventional chemical synapses onto SPNs 
[175]

, often through distinct pathways 

[22, 82, 150]
.  This suggests the descending MA systems have much more selective control 

over sympathetic output than for primary afferents.  The brain could, in effect, increase 

sympathetic responses to visceral input by releasing monoamines only in the IML and 

allowing synaptic transmission to continue as usual in the dorsal horn.  On the other 

hand, by releasing the monoamines in the dorsal horn alone, the balance would be shifted 

to ignore visceral input and its associated sympathetic output.  This selective activation 

and its functional application should be explored further in future studies. 

Excluded from the above analyses were the actions of DA.  Of all the monoamines tested, 

DA had the lowest potency for depressing both the DRP and VRP.  Additionally, the 

effects on both sympathetic efferents and visceral afferents were highly dose-sensitive.  

Low doses of DA appeared to excite SPNs and motor neurons in the ventral root, while 

higher doses had inhibitory actions.  Similarly, low doses of DA facilitated the DRP, thus 

exaggerating the PAD (and therefore likely presynaptic inhibition) induced by visceral 

afferents. This suggests that with only small amounts of DA, there would be a facilitation 

of sympathetic efferent activity while even greater visceral-afferent mediated inhibition 

of afferents, potentially increasing coordination of afferents and efferents necessary for 

organ regulation.  Evidence in the pre-frontal cortex suggests this may be due to 

differences in receptor affinity 
[254, 280]

.  These dose-dependent bimodal actions may have 
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particularly strong ramifications where spinal dopamine levels are thought to be low, 

such as in restless leg syndrome 
[48]

 and Parkinson’s disease 
[259]

.  The differences in 

potency of both DRP and VRP depression of DA versus 5HT and NE also argues for 

distinct mechanisms, a notion suggested by previous work in the lab studying its actions 

on locomotion 
[93]

.   

Overall, the complex actions of the monoamines and the diversity of receptor subtypes 

identified on SPNs with immunohistochemistry equip the descending monoaminergic 

systems with a variety of tools with which to modulate spinal autonomic circuits.  

5.4 FUTURE STUDIES 

This dissertation has laid the groundwork for understanding spinal processing of visceral 

input and sympathetic output. The in vitro spinal cord and sympathetic chain preparation 

is well suited for the study of visceral afferent processing, by allowing direct access to the 

CNS in the absence of the blood brain barrier, where ionic concentrations and 

neurotransmitters may be easily manipulated.  What follows are what I believe to be the 

most important next steps. 

(i) To more fully understand the function of PSI in the autonomic nervous 

system, and what the implications are of its removal, it is imperative to know 

the identity of the giving and receiving afferents involved in visceral afferent 

induced PAD.  This can be investigated with modality- selective stimulation 

of end organs while recording from single identified afferents, such as has 

been done in muscle afferents 
[122]

. 
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(ii) Whether visceral-afferent induced PAD is generated using the traditionally 

touted tri-synaptic circuit with last order GABAergic interneurons or an 

alternative pathway may shed light onto the causes of slower DRP onset in 

visceral afferents.  This can be addressed by assessing the GABAergic 

sensitivity of PAD generation and examining histological basis for axo-

axonic synapses of visceral afferents 
[219]

. 

(iii) The functional implications of descending monoamines would be better 

understood with detailed study of physiological release patterns of the 

monoamines into the spinal cord.  As a starting point, the brainstem could be 

left intact in this in vitro prep and various monoaminergic nuclei targeted for 

selective stimulation. 

(iv) If the descending monoamines do have actions on both synaptic transmission 

and DRP-generating circuitry in the spinal cord, there should be anatomical 

evidence of (at least) two separate sites of action. To investigate potential 

anatomical substrates, immunohistochemistry could be used to analyze 

monoamine receptors co-localized with CGRP
+
 afferent terminals as well as 

monoaminergic nerve terminals nearby. 

(v) The transgenic mouse model can be utilized in future studies of both 

sympathetic output and visceral afferent processing. Conditional neuronal 

knockout/silencing of molecularly distinct cell populations 
[92]

, optogenetics 

[61, 96]
, and selective retrograde tracing of monosynaptically connected 
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neurons 
[242]

 can be utilized to define functional spinal organization of the 

autonomic nervous system, as well as alterations by disease or injury.   

(vi) As the monoamines appear to influence the overall state of visceral sensory 

and sympathetic output processing in the spinal cord, this work lays the 

groundwork for modulating spinal autonomic circuitry after spinal cord 

injury.  Potential therapies for restoring visceral afferent-dependent and 

ongoing sympathetic activity after injury could include intrathecal 

monoaminergic agonist delivery to specific spinal locations.  Investigations 

into receptor laminar specificity and monoaminergic release patterns, as well 

as spinal plasticity after injury would aid immensely to developing such 

treatments. 

In conclusion, my dissertation has begun to elucidate the mechanisms by which the spinal 

cord processes sympathetic motor output and visceral afferent input.  By establishing a 

mouse model and in vitro sympathetic chain and spinal cord preparation I have laid the 

groundwork for delving more into understanding this vital autonomic integration and 

modulation center.   
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